|   | 
Details
   web
Records
Author Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title New Ambiguity in Probing CP Violation in Neutrino Oscillations Type Journal Article
Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 117 Issue 6 Pages 061804 - 5pp
Keywords
Abstract If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new CP phase phi associated with nonunitarity. This leads to an ambiguity in extracting the “standard” three-neutrino phase delta(CP), which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of delta(CP).
Address [Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000381442800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2812
Permanent link to this record
 

 
Author Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F.
Title Sensitivities to neutrino electromagnetic properties at the TEXONO experiment Type Journal Article
Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 750 Issue Pages 459-465
Keywords Reactor neutrinos; Coherent elastic neutrino-nucleus scattering (CENNS); Weak mixing angle; Neutrino magnetic moment; Neutrino charge radius; Quenching factor
Abstract The possibility of measuring neutral-current coherent elastic neutrino nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.
Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Div Theoret Phys, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000364250600075 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2472
Permanent link to this record
 

 
Author Cañas, B.C.; Miranda, O.G.; Parada, A.; Tortola, M.; Valle, J.W.F.
Title Updating neutrino magnetic moment constraints Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 753 Issue Pages 191-198
Keywords
Abstract In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda(i) and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10(-11) mu(B) at 90% C.L. This corresponds to the individual transition magnetic moment constraints: vertical bar Lambda(1)vertical bar <= 5.6 x10(-11)mu(B), vertical bar Lambda(2)vertical bar <= 4.0 x10(-11)mu(B), and vertical bar Lambda(3)vertical bar <= 3.1 x10(-11)mu B(90% C. L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Address [Canas, B. C.; Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000368783600029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2551
Permanent link to this record
 

 
Author Cañas, B.C.; Garces, E.A.; Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title The weak mixing angle from low energy neutrino measurements: A global update Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 761 Issue Pages 450-455
Keywords
Abstract Taking into account recent theoretical and experimental inputs on reactor fluxes we reconsider the determination of the weak mixing angle from low energy experiments. We perform a global analysis to all available neutrino-electron scattering data from reactor antineutrino experiments, obtaining sin(2) theta(W) = 0.252 +/- 0.030. We discuss the impact of the new theoretical prediction for the neutrino spectrum, the new measurement of the reactor antineutrino spectrum by the Daya Bay collaboration, as well as the effect of radiative corrections. We also reanalyze the measurements of the nu(e) – e cross section at accelerator experiments including radiative corrections. By combining reactor and accelerator data we obtain an improved determination for the weak mixing angle, sin(2) theta(W) = 0.254 +/- 0.024.
Address [Canas, B. C.; Miranda, O. G.] Ctr Invest Estudios Avanzados IPN, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000384469900064 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2940
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.
Title Neutrino counting experiments and non-unitarity from LEP and future experiments Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 802 Issue Pages 135241 - 8pp
Keywords
Abstract Non-unitarity of the neutrino mixing matrix is expected in many scenarios with physics beyond the Standard Model. Motivated by the search for deviations from unitary, we study two neutrino counting observables: the neutrino-antineutrino gamma process and the invisible Z boson decay into neutrinos. We report on new constraints for non-unitarity coming from the first of these observables. We study the potential constraints that future collider experiments will give from the invisible decay of the Z boson, that will be measured with improved precision.
Address [Escrihuela, F. J.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000515091400049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4350
Permanent link to this record