|   | 
Details
   web
Records
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D.
Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages C05012 - 12pp
Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)
Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
Address [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000305419700013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1084
Permanent link to this record
 

 
Author Plaza, J.; Bécares, V.; Cano-Ott, D.; Gómez, C.; Martínez, T.; Mendoza, E.; Perez de Rada, A.; Pesudo, V.; Sáez-Vergara, J.C.; Santorelli, R.; Villamarín, D.; Ianni, A.; Peña, C.; Balibrea-Correa, J.; Boeltzig, A.; Imbriani, G.
Title CLYC as a neutron detector in low background conditions Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 11 Pages 1049 - 10pp
Keywords
Abstract We report on the thermal neutron flux measurements carried out at the Laboratorio Subterraneo de Canfranc (LSC) with two commercial 2 '' x 2 '' CLYC detectors. The measurements were performed as part of an experimental campaign at LSC with He-3 detectors, for establishing the sensitivity limits and use of CLYCs in low background conditions. Acareful characterization of the intrinsic alpha and gamma-ray background in the detectors was required and done with dedicated measurements. It was found that the alpha activities in the two CLYC crystals differ by a factor of three, and the use of Monte Carlo simulations and a Bayesian unfolding method allowed us to determine the specific alpha activities from the U-238 and Th-232 decay chains. The simulations and unfolding also revealed that the gamma-ray background registered in the detectors is dominated by the intrinsic activity of the components of the detector such as the aluminum housing and photo-multiplier and that the activity within the crystal is low in comparison. The data from the neutron flux measurements with the two detectors were analyzed with different methodologies: one based on an innovative alpha/neutron pulse shape discrimination method and one based on the subtraction of the intrinsic alpha background that masks the neutron signals in the region of interest. The neutron sensitivity of the CLYCs was calculated by Monte Carlo simulations with MCNP6 and GEANT4. The resulting thermal neutron fluxes are in good agreement with complementary flux measurement performed with He-3 detectors, but close to the detection limit imposed by the intrinsic a activity.
Address [Plaza, J.; Becares, V.; Cano-Ott, D.; Gomez, C.; Martinez, T.; Mendoza, E.; de Rada, A. Perez; Pesudo, V.; Saez-Vergara, J. C.; Santorelli, R.; Villamarin, D.] Ctr Invest Energet Medioambientales & Tecnol, Avda Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001105460800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5835
Permanent link to this record
 

 
Author Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C.
Title Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 42 Issue Pages 1-6
Keywords Neutron background; Underground physics; He-3 proportional counters
Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).
Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000315371900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1351
Permanent link to this record
 

 
Author Plaza, J.; Martinez, T.; Becares, V.; Cano-Ott, D.; Villamarin, D.; de Rada, A.P.; Mendoza, E.; Pesudo, V.; Santorelli, R.; Pena, C.; Balibrea-Correa, J.; Boeltzig, A.
Title Thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) Type Journal Article
Year 2023 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 146 Issue Pages 102793 - 9pp
Keywords Underground neutron background; Thermal neutron flux; He-3 proportional counter; Pulse shape discrimination
Abstract The thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) has been determined using several He-3 proportional counter detectors. Bare and Cd shielded counters were used in a series of long measurements. Pulse shape discrimination techniques were applied to discriminate between neutron and gamma signals as well as other intrinsic contributions. Montecarlo simulations allowed us to estimate the sensitivity of the detectors and calculate values for the background flux of thermal neutrons inside Hall-A of LSC. The obtained value is (3.5 +/- 0.8)x10(-6) n/cm(2)s, and is within an order of magnitude compared to similar facilities.
Address [Plaza, J.; Martinez, T.; Becares, V; Cano-Ott, D.; Villamarin, D.; Perez de Rada, A.; Mendoza, E.; Pesudo, V; Santorelli, R.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000928281600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5482
Permanent link to this record
 

 
Author Briz, J.A.; Nacher, E.; Borge, M.J.G.; Algora, A.; Rubio, B.; Dessagne, P.; Maira, A.; Cano-Ott, D.; Courtin, S.; Escrig, D.; Fraile, L.M.; Gelletly, W.; Jungclaus, A.; Le Scornet, G.; Marechal, F.; Miehe, C.; Poirier, E.; Poves, A.; Sarriguren, P.; Tain, J.L.; Tengblad, O.
Title Shape study of the N = Z nucleus Kr-72 via beta decay Type Journal Article
Year 2015 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 92 Issue 5 Pages 054326 - 10pp
Keywords
Abstract The beta decay of the N = Z nucleus Kr-72 has been studied with the total absorption spectroscopy technique at ISOLDE (CERN). A total B(GT) = 0.79(4)g(A)(2)/4 pi has been found up to an excitation energy of 2.7 MeV. The B(GT) distribution obtained is compared with predictions from state-of-the-art theoretical calculations to learn about the ground state deformation of Kr-72. Although a dominant oblate deformation is suggested by direct comparison with quasiparticle random phase approximation (QRPA) calculations, beyond-mean-field and shell-model calculations favor a large oblate-prolate mixing in the ground state.
Address [Briz, J. A.; Nacher, E.; Borge, M. J. G.; Maira, A.; Escrig, D.; Jungclaus, A.; Sarriguren, P.; Tengblad, O.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: jose.briz@subatech.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000365867500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2486
Permanent link to this record