Balbinot, R., & Fabbri, A. (2023). The Hawking Effect in the Particles-Partners Correlations. Physics, 5(4), 968–982.
Abstract: We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.
|
Balbinot, R., & Fabbri, A. (2024). The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime. Universe, 10(1), 18–14pp.
Abstract: The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner-Nordstrom black hole (both extremal and not), highlighting the similarities and striking differences.
|
Araujo Filho, A. A., Jusufi, K., Cuadros-Melgar, B., & Leon, G. (2024). Dark matter signatures of black holes with Yukawa potential. Phys. Dark Universe, 44, 101500–20pp.
Abstract: This study uses a nonsingular Yukawa-modified potential to obtain a static and spherically symmetric black hole solution with a cosmological constant. Such Yukawa-like corrections are encoded in two parameters, alpha and lambda, that modify Newton's law of gravity in large distances, and a deformation parameter l(0), which plays an essential role in short distances. The most significant effect is encoded in alpha, which modifies the total black hole mass with an extra mass proportional to alpha M, mimicking the dark matter effects at large distances from the black hole. On the other hand, the effect due to lambda is small for astrophysical values. We scrutinize the quasinormal frequencies and shadows associated with a spherically symmetric black hole and the thermodynamical behavior influenced by the Yukawa potential. In particular, the thermodynamics of this black hole displays a rich behavior, including possible phase transitions. We use the WKB method to probe the quasinormal modes of massless scalar, electromagnetic, and gravitational field perturbations. In order to check the influence of the parameters on the shadow radius, we consider astrophysical data to determine their values, incorporating information on an optically thin radiating and infalling gas surrounding a black hole to model the black hole shadow image. In particular, we consider Sgr A* black hole as an example and we find that its shadow radius changes by order of 10(-9), meaning that the shadow radius of a black hole with Yukawa potential practically gives rise to the same result encountered in the Schwarzschild black hole. Also, in the eikonal regime, using astrophysical data for Yukawa parameters, we show that the value of the real part of the QNMs frequencies changes by 10(-18). Such Yukawa-like corrections are, therefore, difficult to measure by observations of gravitational waves using the current technology.
|
Araujo Filho, A. A., Jusufi, K., Cuadros-Melgar, B., Leon, G., Jawad, A., & Pellicer, C. E. (2024). Charged black holes with Yukawa potential. Phys. Dark Universe, 46, 101711–16pp.
Abstract: This study derives a novel family of charged black hole solutions featuring short- and long-range modifications. These are achieved through a Yukawa-like gravitational potential modification and a nonsingular electric potential incorporation. The short-range corrections encode quantum gravity effects, while the long-range adjustments simulate gravitational effects akin to those attributed to dark matter. Our investigation reveals that the total mass of the black hole undergoes corrections owing to the apparent presence of dark matter mass and the self-adjusted electric charge mass. Two distinct solutions are discussed: a regular black hole solution characterizing small black holes, where quantum effects play a crucial role, and a second solution portraying large black holes at considerable distances, where the significance of Yukawa corrections comes into play. Notably, these long-range corrections contribute to an increase in the total mass and hold particular interest as they can emulate the role of dark matter. Finally, we explore the phenomenological aspects of the black hole. Specifically, we examine the influence of electric charge and Yukawa parameters on thermodynamic quantities, the quasinormal modes for the charged scalar perturbations as well as for the vector perturbations, analysis of the geodesics of light/massive particles, and the accretion of matter onto the charged black hole solution.
|
Galli, P., Ortin, T., Perz, J., & Shahbazi, C. S. (2012). From supersymmetric to non-supersymmetric black holes. Fortschritte Phys.-Prog. Phys., 60(9-10), 1026–1029.
Abstract: Methods similar to those used for obtaining supersymmetric black hole solutions can be employed to find also non-supersymmetric solutions. We briefly review some of them, with the emphasis on the non-extremal deformation ansatz of [1].
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2016). Impact of curvature divergences on physical observers in a wormhole space-time with horizons. Class. Quantum Gravity, 33(11), 115007–12pp.
Abstract: The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2018). Accelerated observers and the notion of singular spacetime. Class. Quantum Gravity, 35(5), 055010–18pp.
Abstract: Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.
|
Fernandez-Silvestre, D., Foo, J., & Good, M. R. R. (2022). On the duality of Schwarzschild-de Sitter spacetime and moving mirror. Class. Quantum Gravity, 39(5), 055006–18pp.
Abstract: The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.
|
Olmo, G. J., Rosa, J. L., Rubiera-Garcia, D., & Saez-Chillon Gomez, D. (2023). Shadows and photon rings of regular black holes and geonic horizonless compact objects. Class. Quantum Gravity, 40(17), 174002–37pp.
Abstract: The optical appearance of a body compact enough to feature an unstable bound orbit, when surrounded by an accretion disk, is expected to be dominated by a luminous ring of radiation enclosing a central brightness depression typically known as the shadow. Despite observational limitations, the rough details of this picture have been now confirmed by the results of the Event Horizon Telescope (EHT) Collaboration on the imaging of the M87 and Milky Way supermassive central objects. However, the precise characterization of both features-ring and shadow-depends on the interaction between the background geometry and the accretion disk, thus being a fertile playground to test our theories on the nature of compact objects and the gravitational field itself in the strong-field regime. In this work we use both features in order to test a continuous family of solutions interpolating between regular black holes and horizonless compact objects, which arise within the Eddington-inspired Born-Infeld theory of gravity, a viable extension of Einstein's general relativity (GR). To this end we consider seven distinctive classes of such configurations (five black holes and two traversable wormholes) and study their optical appearances under illumination by a geometrically and optically thin accretion disk, emitting monochromatically with three analytic intensity profiles previously suggested in the literature. We build such images and consider the sub-ring structure created by light rays crossing the disk more than once and existing on top of the main ring of radiation. We discuss in detail the modifications as compared to their GR counterparts, the Lyapunov exponents of unstable nearly-bound orbits, as well as the differences between black hole and traversable wormholes for the three intensity profiles. In addition we use the claim by the EHT Collaboration on the radius of the bright ring acting (under proper calibrations) as a proxy for the radius of the shadow itself to explore the parameter space of our solutions compatible with such a result.
|
Navarro-Salas, J. (2024). Black holes, conformal symmetry, and fundamental fields. Class. Quantum Gravity, 41(8), 085003–14pp.
Abstract: Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.
|