|   | 
Details
   web
Records
Author Lledo, M.A.
Title Superfields, Nilpotent Superfields and Superschemes dagger Type Journal Article
Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 12 Issue 6 Pages 1024 - 32pp
Keywords supergeometry; superfields; quantum field theory
Abstract We interpret superfields in a functorial formalism that explains the properties that are assumed for them in the physical applications. We study the non-trivial relation of scalar superfields with the defining sheaf of the supermanifold of super spacetime. We also investigate in the present work some constraints that are imposed on the superfields, which allow for non-trivial solutions. They give rise to superschemes that, generically, are not regular, that is they do not define a standard supermanifold.
Address [Antonia Lledo, Maria] Univ Valencia, Dept Fis Teor, C Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: maria.lledo@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000550827300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4468
Permanent link to this record
 

 
Author Yamamoto, H.
Title The International Linear Collider Project-Its Physics and Status Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 4 Pages 674 - 15pp
Keywords Higgs particle; elementary particles; standard theory; linear collider; dark matter; top quark
Abstract The discovery of Higgs particle has ushered in a new era of particle physics. Even though the list of members of the standard theory of particle physics is now complete, the shortcomings of the theory became ever more acute. It is generally considered that the best solution to the problems is an electron-positron collider that can study Higgs particle with high precision and high sensitivity; namely, a Higgs factory. Among a few candidates for Higgs factory, the International Linear Collider (ILC) is currently the most advanced in its program. In this article, we review the physics and the project status of the ILC including its energy expandability.
Address [Yamamoto, Hitoshi] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi 9800812, Japan, Email: yhitoshi@epx.phys.tohoku.ac.jp
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000643622400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4797
Permanent link to this record
 

 
Author Vijande, J.; Tedgren, A.C.; Ballester, F.; Baltas, D.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; De Werd, L.; Perez-Calatayud, J.
Title Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates Type Journal Article
Year 2021 Publication Physics and Imaging in Radiation Oncology Abbreviated Journal Phys. Imag. Radiat. Oncol.
Volume 19 Issue Pages 108-111
Keywords RAKR; Calibration; HDR; PDR; Brachytherapy
Abstract Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. Results: Over the survey period, 77% of the Ir-192 measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% +/- 1.15% for Ir-192 and -0.1% +/- 1.3% for Co-60. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. Conclusions: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.
Address [Vijande, Javier; Ballester, Facundo] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: Javier.vijande@uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000694711800017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4969
Permanent link to this record
 

 
Author Moretti, F.; Bombacigno, F.; Montani, G.
Title The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas Type Journal Article
Year 2021 Publication Universe Abbreviated Journal Universe
Volume 7 Issue 12 Pages 496 - 28pp
Keywords gravitational waves; gauge-invariant method; Landau damping; macroscopic gravity
Abstract We discuss some general and relevant features of longitudinal gravitational modes in Horndeski gravity and their interaction with matter media. Adopting a gauge-invariant formulation, we clarify how massive scalar and vector fields can induce additional transverse and longitudinal excitations, resulting in breathing, vector, and longitudinal polarizations. We review, then, the interaction of standard gravitational waves with a molecular medium, outlining the emergence of effective massive gravitons, induced by the net quadrupole moment due to molecule deformation. Finally, we investigate the interaction of the massive mode in Horndeski gravity with a noncollisional medium, showing that Landau damping phenomenon can occur in the gravitational sector as well. That allows us to introduce the concept of “gravitational plasma”, where inertial forces associated with the background field play the role of cold ions in electromagnetic plasma.
Address [Moretti, Fabio; Montani, Giovanni] Sapienza Univ Rome, Dept Phys, Ple Aldo Moro 5, I-00185 Rome, Italy, Email: fabio.moretti@uniroma1.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000741918900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5076
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.
Title Stringy Signals from Large-Angle Correlations in the Cosmic Microwave Background? Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 8 Pages 396 - 13pp
Keywords cosmic microwave background; angular correlations; inflation; string theory
Abstract We interpret the lack of large-angle temperature correlations and the even-odd parity imbalance observed in the cosmic microwave background (CMB) by COBE, WMAP and Planck satellite missions as a possible stringy signal ultimately stemming from a composite inflaton field (e.g., a fermionic condensate). Based on causality arguments and a Fourier analysis of the angular two-point correlation function, two infrared cutoffs k(min)(even,odd) (satisfying k(min)(even) similar or equal to 2k(min)(odd)) are introduced to the CMB power spectrum associated, respectively, with periodic and antiperiodic boundary conditions of the fermionic constituents (echoing the Neveu-Schwarz-Ramond model in superstring theory), without resorting to any particular model.
Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, Dept Theoret Phys, Doctor Moliner 50, Burjassot 46011, Spain, Email: miguel.angel.sanchis@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000845107300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5344
Permanent link to this record
 

 
Author Navarro-Salas, J.; Pla, S.
Title Particle Creation and the Schwinger Model Type Journal Article
Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 14 Issue 11 Pages 2435 - 9pp
Keywords Schwinger model; semiclassical theory; particle creation
Abstract We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.
Address [Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Fac Fis, Dept Fis Teor & IFIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000895122100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5432
Permanent link to this record
 

 
Author Ferreira, M.N.; Papavassiliou, J.
Title Gauge Sector Dynamics in QCD Type Journal Article
Year 2023 Publication Particles Abbreviated Journal Particles
Volume 6 Issue 1 Pages 312-363
Keywords continuum Schwinger function methods; emergence of hadron mass; gluon mass generation; lattice QCD; non-perturbative quantum field theory; quantum chromodynamics; Schwinger-Dyson equations; Schwinger mechanism
Abstract The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are crucial for the internal consistency of the theory; most notably, they account for the generation of a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex. In the present work, we review some key advances in the ongoing investigation of this sector within the framework of the continuum Schwinger function methods, supplemented by results obtained from lattice simulations.
Address [Ferreira, Mauricio Narciso; Papavassiliou, Joannis] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: ansonar@uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000959126400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5504
Permanent link to this record
 

 
Author Oliver-Canamas, L.; Vijande, J.; Candela-Juan, C.; Gimeno-Olmos, J.; Pujades-Claumarchirant, M.C.; Rovira-Escutia, J.J.; Ballester, F.; Perez-Calatayud, J.
Title A User-Friendly System for Mailed Dosimetric Audits of Ir-192 or Co-60 HDR Brachytherapy Sources Type Journal Article
Year 2023 Publication Cancers Abbreviated Journal Cancers
Volume 15 Issue 9 Pages 2484 - 14pp
Keywords high dose rate brachytherapy; dosimetric audit; error detection; phantom
Abstract Nowadays, the options available to perform external dosimetric audits of the high dose rate (HDR) brachytherapy treatment process are limited. In this work, we present a methodology that allows for performing dosimetric audits in this field. A phantom was designed and manufactured for this purpose. The criteria for its design, together with the in-house measurements for its characterization, are presented. The result is a user-friendly system that can be mailed to perform dosimetric audits in HDR brachytherapy on-site for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Objectives: The main goal of this work is to design and characterize a user-friendly methodology to perform mailed dosimetric audits in high dose rate (HDR) brachytherapy for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Methods: A solid phantom was designed and manufactured with four catheters and a central slot to place one dosimeter. Irradiations with an Elekta MicroSelectron V2 for Ir-192, and with a BEBIG Multisource for Co-60 were performed for its characterization. For the dose measurements, nanoDots, a type of optically stimulated luminescent dosimeters (OSLDs), were characterized. Monte Carlo (MC) simulations were performed to evaluate the scatter conditions of the irradiation set-up and to study differences in the photon spectra of different Ir-192 sources (Microselectron V2, Flexisource, BEBIG Ir2.A85-2 and Varisource VS2000) reaching the dosimeter in the irradiation set-up. Results: MC simulations indicate that the surface material on which the phantom is supported during the irradiations does not affect the absorbed dose in the nanoDot. Generally, differences below 5% were found in the photon spectra reaching the detector when comparing the Microselectron V2, the Flexisource and the BEBIG models. However, differences up to 20% are observed between the V2 and the Varisource VS2000 models. The calibration coefficients and the uncertainty in the dose measurement were evaluated. Conclusions: The system described here is able to perform dosimetric audits in HDR brachytherapy for systems using either Ir-192 or Co-60 sources. No significant differences are observed between the photon spectra reaching the detector for the MicroSelectron V2, the Flexisource and the BEBIG Ir-192 sources. For the Varisource VS2000, a higher uncertainty is considered in the dose measurement to allow for the nanoDot response.
Address [Oliver-Canamas, Laura] Serv Radiofis & Proteccio Radiol, Consorci Hospitalari Prov Castello CHPC, Castellon de La Plana 12002, Spain, Email: laura.oliver.canas@gmail.com
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000987247100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5542
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Furtado, J.; Hassanabadi, H.; Reis, J.A.A.S.
Title Thermal analysis of photon-like particles in rainbow gravity Type Journal Article
Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 42 Issue Pages 101310 - 8pp
Keywords Rainbow gravity; Thermodynamics; Bounds
Abstract This work is devoted to study the thermodynamic behavior of photon-like particles within the rainbow gravity formalism. To to do this, we chose two particular ansatzs to accomplish our calculations. First, we consider a dispersion relation which avoids UV divergences, getting a positive effective cosmological constant. We provide numerical analysis for the thermodynamic functions of the system and bounds are estimated. Furthermore, a phase transition is also expected for this model. Second, we consider a dispersion relation employed in the context of Gamma Ray Bursts. Remarkably, for this latter case, the thermodynamic properties are calculated in an analytical manner and they turn out to depend on the harmonic series Hn, gamma & UGamma; (z), polygamma & psi;n(z) and zeta Riemann functions & zeta;(z).
Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor & IFIC, Ctr Mixto Univ Valencia, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:001062674000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5667
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title Hartree-Fock Calculations in Semi-Infinite Matter with Gogny Interactions Type Journal Article
Year 2023 Publication Universe Abbreviated Journal Universe
Volume 9 Issue 9 Pages 398 - 11pp
Keywords Nuclear Density Functional Theory; semi-infinite nuclear matter; Hartree-Fock equations; 21.60.Jz; 21.65.-f; 21.65.Mn
Abstract Hartree-Fock equations in semi-infinite nuclear matter for finite range Gogny interactions are presented together with a detailed numerical scheme to solve them. The value of the surface energy is then extracted and given for standard Gogny interactions.
Address [Davesne, Dany] Univ Lyon 1, Inst Phys Infinis Lyon 2, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:001074530100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5693
Permanent link to this record