|   | 
Details
   web
Records
Author Zornoza, J.D.
Title Review on Indirect Dark Matter Searches with Neutrino Telescopes Type Journal Article
Year 2021 Publication Universe Abbreviated Journal Universe
Volume 7 Issue 11 Pages 415 - 10pp
Keywords dark matter; neutrino telescopes; IceCube; ANTARES; KM3NeT; SuperK
Abstract The search for dark matter is one of the hottest topics in Physics today. The fact that about 80% of the matter of the Universe is of unknown nature has triggered an intense experimental activity to detect this kind of matter and a no less intense effort on the theory side to explain it. Given the fact that we do not know the properties of dark matter well, searches from different fronts are mandatory. Neutrino telescopes are part of this experimental quest and offer specific advantages. Among the targets to look for dark matter, the Sun and the Galactic Center are the most promising ones. Considering models of dark matter densities in the Sun, neutrino telescopes have put the best limits on spin-dependent cross section of proton-WIMP scattering. Moreover, they are competitive in the constraints on the thermally averaged annihilation cross-section for high WIMP masses when looking at the Galactic Centre. Other results are also reviewed.
Address [de Dios Zornoza, Juan] IFIC Inst Fis Corpuscular UV CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: zornoza@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000723346500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5044
Permanent link to this record
 

 
Author Hernandez-Rey, J.J.; Ardid, M.; Bou Cabo, M.; Calvo, D.; Diaz, A.F.; Gozzini, S.R.; Martinez-Mora, J.A.; Navas, S.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Science with Neutrino Telescopes in Spain Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 89 - 25pp
Keywords neutrino; neutrino telescopes; neutrino astrophysics; neutrino properties; sea science
Abstract The primary scientific goal of neutrino telescopes is the detection and study of cosmic neutrino signals. However, the range of physics topics that these instruments can tackle is exceedingly wide and diverse. Neutrinos coming from outside the Earth, in association with other messengers, can contribute to clarify the question of the mechanisms that power the astrophysical accelerators which are known to exist from the observation of high-energy cosmic and gamma rays. Cosmic neutrinos can also be used to bring relevant information about the nature of dark matter, to study the intrinsic properties of neutrinos and to look for physics beyond the Standard Model. Likewise, atmospheric neutrinos can be used to study an ample variety of particle physics issues, such as neutrino oscillation phenomena, the determination of the neutrino mass ordering, non-standard neutrino interactions, neutrino decays and a diversity of other physics topics. In this article, we review a selected number of these topics, chosen on the basis of their scientific relevance and the involvement in their study of the Spanish physics community working in the KM3NeT and ANTARES neutrino telescopes.
Address [Hernandez-Rey, Juan Jose; Calvo, David; Gozzini, Sara Rebecca; Real, Diego; Greus, Francisco Salesa; Losa, Agustin Sanchez; Zornoza, Juan de Dios; Zuniga, Juan] Univ Valencia, IFIC Inst Fis Corpuscular, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: juan.j.hernandez@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000762321400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5145
Permanent link to this record
 

 
Author Real, D.; Calvo, D.
Title Silicon Photomultipliers for Neutrino Telescopes Type Journal Article
Year 2023 Publication Universe Abbreviated Journal Universe
Volume 9 Issue 7 Pages 326 - 14pp
Keywords silicon photomultipliers; neutrino telescopes; time to digital converters; electronics acquisition
Abstract Neutrino astronomy has opened a new window to the extreme Universe, entering into a fruitful era built upon the success of neutrino telescopes, which have already given a new step forward in this novel and growing field by the first observation of steady point-like sources already achieved by IceCube. Neutrino telescopes equipped with Silicon PhotoMultipliers (SiPMs) will significantly increase in number, because of their excellent time resolution and the angular resolution, and will be in better condition to detect more steady sources as well as the unexpected. The use of SiPMs represents a challenge to the acquisition electronics because of the fast signals as well as the high levels of dark noise produced by SiPMs. The acquisition electronics need to include a noise rejection scheme by implementing a coincidence filter between channels. This work discusses the advantages and disadvantages of using SiPMs for the next generation of neutrino telescopes, focusing on the possible developments that could help for their adoption in the near future.
Address [Real, Diego; Calvo, David] Univ Valencia, Inst Fis Corpuscular, CSIC, IFIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:001038900800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5593
Permanent link to this record
 

 
Author Real, D.; Sanchez Losa, A.; Diaz, A.; Salesa Greus, F.; Calvo, D.
Title The Neutrino Mediterranean Observatory Laser Beacon: Design and Qualification Type Journal Article
Year 2023 Publication Applied Sciences-Basel Abbreviated Journal Appl. Sci.-Basel
Volume 13 Issue 17 Pages 9935 - 16pp
Keywords neutrino telescope; time calibration; laser beacon
Abstract This paper encapsulates details of the NEMO laser beacon's design, offering a profound contribution to the field of the time calibration of underwater neutrino telescopes. The mechanical design of the laser beacon, which operates at a depth of 3500 m, is presented, together with the design of the antibiofouling system employed to endure the operational pressure and optimize the operational range, enhancing its functionality and enabling time calibration among multiple towers. A noteworthy innovation central to this development lies in the battery system. This configuration enhances the device's portability, a crucial aspect in underwater operations. The comprehensive design of the laser beacon, encompassing the container housing, the requisite battery system for operation, electronics, and an effective antibiofouling system, is described in this paper. Additionally, this paper presents the findings of the laser beacon's qualification process.
Address [Real, Diego; Losa, Agustin Sanchez; Greus, Francisco Salesa; Calvo, David] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:001063704500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5668
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F.
Title Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection Type Journal Article
Year 2024 Publication Sensors Abbreviated Journal Sensors
Volume 24 Issue 7 Pages 2084 - 12pp
Keywords time-to-digital converters; neutrino telescopes; silicon photomultipliers; dark noise rate filtering
Abstract Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.
Address [Real, Diego; Calvo, David; Zornoza, Juan de Dios; Manzaneda, Mario; Gozzini, Rebecca; Albiol, Francisco] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:001201226600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6063
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 256 Issue Pages 107477 - 15pp
Keywords Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE
Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.
Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000564482200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4520
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Diaz, A.; Alves Garre, S.; Carretero, V.; Sanchez Losa, A.; Salesa Greus, F.
Title An Ultra-Narrow Time Optical Pulse Emitter Based on a Laser: UNTOPEL Type Journal Article
Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 70 Issue 10 Pages 2364-2372
Keywords Instrumentation electronics; neutrino telescope instrumentation; subnanosecond light source; time calibration instrument
Abstract Light sources that emit repetitive subnanosecond pulses are used in neutrino telescopes for time calibration. Optical pulses with an ultra-narrow (subnanosecond) width can replicate the light produced by neutrino interactions, and are an important calibration and test element. By measuring the time-of-flight of the light, it is possible to provide a relative time calibration for all the detector photomultipliers. This work presents the ultra-narrow time optical pulse emitter based on a laser (UNTOPEL), an instrument emitting ultra-short laser optical pulses with a duration of 500 ps, energies per pulse of four microjoules at a wavelength of 532 nm, and a timing precision of 400 ps. The UNTOPEL pulse intensity can be fine-tuned, which is a novelty and a significant advantage in those applications that need to illuminate light detectors located at different distances with the same light intensity. The UNTOPEL pulse intensity can be controlled remotely, allowing for its use in operating conditions where physical access is impossible or difficult. Moreover, it is easy to operate and can be easily controlled through an inter-integrated circuit bus. The UNTOPEL is a sound instrument used when subnanosecond pulses and variable energy emissions are needed.
Address [Real, Diego; Calvo, David; Garre, Sergio Alves; Carretero, Victor; Losa, Agustin Sanchez; Greus, FranciscoSalesa] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: real@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:001098078200010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5795
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Performance of the front-end electronics of the ANTARES neutrino telescope Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 622 Issue 1 Pages 59-73
Keywords Neutrino telescope; Photomultiplier tube; Front-end electronics; ASIC
Abstract ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip: results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.
Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, CSIC, Valencia 46071, Spain, Email: s.loucatos@cea.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000282530300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 363
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 626 Issue Pages 128-143
Keywords AMADEUS; ANTARES; Neutrino telescope; Acoustic neutrino detection; Thermo-acoustic model
Abstract The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around – 145 dB re 1 V/mu Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.
Address [Anton, G.; Auer, R.; Eberl, T.; Fehr, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Kretschmer, W.; Lahmann, R.; Laschinsky, H.; Motz, H.; Neff, M.; Ostasch, R.; Richardt, C.; Schoeck, F.; Shanidze, R.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: robert.lahmann@physik.uni-erlangen.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000286793800020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 578
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title A method for detection of muon induced electromagnetic showers with the ANTARES detector Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 675 Issue Pages 56-62
Keywords Neutrino telescope; Electromagnetic shower identification; High energy muons; Energy reconstruction
Abstract The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.
Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Rostovtsev, A.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: manganos@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000302973600011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 988
Permanent link to this record