|   | 
Details
   web
Records
Author NEMO-3 Collaboration (Argyriades, J. et al); Diaz, J.; Martin-Albo, J.; Monrabal, F.; Novella, P.; Serra, L.; Yahlali, N.
Title Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 625 Issue 1 Pages 20-28
Keywords Scintillation; Photomultiplier; Plastic scintillators; Optical photon transport; GEANT 4; Double beta decay
Abstract We have constructed a GEANT4-based detailed software model of photon transport in plastic sontillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutnnoless double beta decay We compare our simulations to measurements using conversion electrons from a calibration source of (BI)-B-207 and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account In this article we briefly describe our modeling approach and results of our studies.
Address [Lang, K.; Pahlka, R. B.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000285432400004 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 587
Permanent link to this record
 

 
Author Albertus, C.; Aoki, Y.; Boyle, P.A.; Christ, N.H.; Dumitrescu, T.T.; Flynn, J.M.; Ishikawa, T.; Izubuchi, T.; Loktik, O.; Sachrajda, C.T.; Soni, A.; Van de Water, R.S.; Wennekers, J.; Witzel, O.
Title Neutral B-meson mixing from unquenched lattice QCD with domain-wall light quarks and static b quarks Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 1 Pages 014505 - 29pp
Keywords
Abstract We demonstrate a method for calculating the neutral B-meson decay constants and mixing matrix elements in unquenched lattice QCD with domain-wall light quarks and static b-quarks. Our computation is performed on the "2 + 1'' flavor gauge configurations generated by the RBC and UKQCD Collaborations with a lattice spacing of a approximate to 0.11 fm (a(-1) = 1.729 GeV) and a lattice spatial volume of approximately (1.8 fm)(3). We simulate at three different light sea quark masses with pion masses down to approximately 430 MeV, and extrapolate to the physical quark masses using a phenomenologically-motivated fit function based on next-to-leading order heavy-light meson SU(2) chiral perturbation theory. For the b-quarks, we use an improved formulation of the Eichten-Hill action with static link-smearing to increase the signal-to-noise ratio. We also improve the heavy-light axial current used to compute the B-meson decay constant to O(alpha(s)pa) using one-loop lattice perturbation theory. We present initial results for the SU(3)-breaking ratios f(Bs)/f(Bd) and xi = f(Bs)root B-Bs/f(Bd)root B-Bd, thereby demonstrating the viability of the method. For the ratio of decay constants, we find f(Bs)/f(Bd) = 1.15(12) and for the ratio of mixing matrix elements, we find xi = 1.13(12), where in both cases the errors reflect the combined statistical and systematic uncertainties, including an estimate of the size of neglected O(1/m(b)) effects.
Address [Albertus, C.; Flynn, J. M.; Sachrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000280124300003 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 405
Permanent link to this record
 

 
Author Molina, R.; Branz, T.; Oset, E.
Title New interpretation for the D*(s2)(2573) and the prediction of novel exotic charmed mesons Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 1 Pages 014010 - 17pp
Keywords
Abstract In this manuscript we study the vector-vector interaction within the hidden-gauge formalism in a coupled channel unitary approach. In the sector C = 1, S = 1, J = 2 we get a pole in the T matrix around 2572 MeV that we identify with the D*(s2)(2573), coupling strongly to the D*K*(D-s(*)phi(omega)) channels. In addition we obtain resonances in other exotic sectors which have not been studied before such as C = 1, S = -1, C = 2, S = 0 and C = 2, S = 1. These "flavor-exotic'' states are interpreted as D*(K) over bar*, D*D*, and (DsD)-D-** molecular states but have not been observed yet. In total we obtain nine states with different spin, isospin, charm, and strangeness of non-C = 0, S = 0 and C = 1, S = 0 character, which have been reported before.
Address [Molina, R.; Oset, E.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Inst Invest Paterna, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000280175300001 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 406
Permanent link to this record
 

 
Author Garcia-Recio, C.; Nieves, J.; Tolos, L.
Title D mesic nuclei Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 690 Issue 4 Pages 369-375
Keywords Charm; Mesic nuclei; Heavy quark symmetry
Abstract The energies and widths of several D-0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D-0 bound states in all studied nuclei, from C-12 up to Pb-208. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D-0-nucleus bound states, as compared to previous studies based on SU(4) flavor symmetry. In some cases, the half widths are smaller than the separation of the levels, what makes possible their experimental observation by means of a nuclear reaction. This can be of particular interest for the future PANDA@FAIR physics program. We also find a D+ bound state in C-12, but it is too broad and will have a significant overlap with the energies of the continuum.
Address [Garcia-Recio, C.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain, Email: g_recio@ugr.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000279835300007 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 407
Permanent link to this record
 

 
Author Yamagata-Sekihara, J.; Oset, E.
Title V P gamma radiative decay of resonances dynamically generated from the vector meson-vector meson interaction Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 690 Issue 4 Pages 376-381
Keywords Local hidden gauge; Radiative decays; Vector mesons; Dynamically generated resonances
Abstract We evaluate the radiative decay into a vector, a pseudoscalar and a photon of several resonances dynamically generated from the vector-vector interaction. The process proceeds via the decay of one of the vector components into a pseudoscalar and a photon, which have an invariant mass distribution very different from phase space as a consequence of the two vector structure of the resonances. Experimental work along these lines should provide useful information on the nature of these resonances.
Address [Yamagata-Sekihara, J.] Univ Valencia, Ctr Mixto, CSIC, Inst Invest Paterna,Dept Fis Teor, Valencia 46071, Spain, Email: yamagata@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000279835300008 Approved no
Is ISI (up) yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 408
Permanent link to this record
 

 
Author n_TOF Collaboration (Mosconi, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title Neutron physics of the Re/Os clock. I. Measurement of the (n, gamma) cross sections of Os-186,Os-187,Os-188 at the CERN n_TOF facility Type Journal Article
Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 82 Issue 1 Pages 015802 - 10pp
Keywords
Abstract The precise determination of the neutron capture cross sections of Os-186 and Os-187 is important to define the s-process abundance of Os-187 at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of Os-187 due to the decay of the unstable Re-187 (t(1/2) = 41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of Os-186, Os-187, and Os-188 have been measured at the CERN n_TOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C6D6 scintillation detectors for recording the prompt. rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT = 5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for Os-186, Os-187, and Os-188, respectively.
Address [Mosconi, M.; Domingo-Pardo, C.; Kaeppeler, F.; Audouin, L.; Bisterzo, S.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Inst Kernphys, D-76021 Karlsruhe, Germany, Email: Marita.Mosconi@ptb.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes ISI:000279940200007 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 409
Permanent link to this record
 

 
Author n_TOF Collaboration (Fujii, K. et al); Domingo-Pardo, C.; Tain, J.L.
Title Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n, gamma) cross sections of Os-186,Os-187,Os-188 Type Journal Article
Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 82 Issue 1 Pages 015804 - 18pp
Keywords
Abstract Neutron resonance analyses have been performed for the capture cross sections of Os-186, Os-187, and Os-188 measured at the n_TOF facility at CERN. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the SAMMY code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the Os-187 abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.
Address [Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, I-34149 Trieste, Italy, Email: Kaori.Fujii@ts.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes ISI:000279940200009 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 410
Permanent link to this record
 

 
Author Bertolini, S.; Di Luzio, L.; Malinsky, M.
Title Minimal flipped SO(10) x U(1) supersymmetric Higgs model Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 3 Pages 035002 - 28pp
Keywords
Abstract We investigate the conditions on the Higgs sector that allow supersymmetric SO(10) grand unified theories to break spontaneously to the standard electroweak model at the renormalizable level. If one considers Higgs representations of dimension up to the adjoint, a supersymmetric standard model vacuum requires, in most cases, the presence of nonrenormalizable operators. The active role of Planck-induced nonrenormalizable operators in the breaking of the gauge symmetry introduces a hierarchy in the mass spectrum at the grand unified theory scale that may be an issue for gauge unification and proton decay. We show that the minimal Higgs scenario that allows for a renormalizable breaking to the standard model is obtained by considering flipped SO(10) circle times U(1) with one adjoint (45(H)) and two pairs of 16(H) circle plus (16) over bar (H) Higgs representations. We consider a nonanomalous matter content and discuss the embedding of the model in an E-6 grand unified scenario just above the flipped SO(10) scale.
Address [Bertolini, Stefano; Di Luzio, Luca] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy, Email: bertolin@sissa.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286883700007 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 565
Permanent link to this record
 

 
Author Mendez, V.; Amoros, G.; Garcia, F.; Salt, J.
Title Emergent algorithms for replica location and selection in data grid Type Journal Article
Year 2010 Publication Future Generation Computer Systems Abbreviated Journal Futur. Gener. Comp. Syst.
Volume 26 Issue 7 Pages 934-946
Keywords Grid computing; Algorithms; Optimization methods; Artificial intelligence
Abstract Grid infrastructures for e-Science projects are growing in magnitude terms. Improvements in data Grid replication algorithms may be critical in many of these infrastructures. This paper shows a decentralized replica optimization service, providing a general Emergent Artificial Intelligence (EAI) algorithm for the problem definition. Our aim is to set up a theoretical framework for emergent heuristics in Grid environments. Further, we describe two EAI approaches, the Particle Swarm Optimization PSO-Grid Multiswarm Federation and the Ant Colony Optimization ACO-Grid Asynchronous Colonies Optimization replica optimization algorithms, with some examples. We also present extended results with best performance and scalability features for PSO-Grid Multiswarrn Federation.
Address [Mendez Munoz, Victor; Amoros Vicente, Gabriel; Salt Cairols, Jose] CSIC, Grid & E Sci Grp, Inst Fis Corpuscular IFIC, Mixed Inst, E-46071 Valencia, Spain, Email: vmendez@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-739x ISBN Medium
Area Expedition Conference
Notes ISI:000279804200004 Approved no
Is ISI (up) yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 411
Permanent link to this record
 

 
Author Rodriguez, D. et al; Algora, A.; Rubio, B.; Tain, J.L.
Title MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR Type Journal Article
Year 2010 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume 183 Issue Pages 1-123
Keywords
Abstract Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.
Address [Rodriguez, D.; Lallena, A. M.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain, Email: danielrodriguez@ugr.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes ISI:000280061400001 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 412
Permanent link to this record