|   | 
Details
   web
Records
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for Cosmic Neutrino Point Sources with Four Years of Data from the Antares Telescope Type Journal Article
Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 760 Issue 1 Pages 53 - 10pp
Keywords astroparticle physics; cosmic rays; neutrinos
Abstract In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E-nu(-2). spectrum, these flux limits are at 1-10x10(-8) GeV cm(-2) s(-1) for declinations ranging from -90 degrees to 40 degrees. Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.
Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Ferri, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, E-46730 Gandia, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000310922200053 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1219
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Constraints on the origin of cosmic rays above 10^18 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 762 Issue 1 Pages L13 - 8pp
Keywords astroparticle physics; cosmic rays
Abstract A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(18) eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000312488400013 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1279
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Large-scale distribution of arrival directions of cosmic rays detected above 10^18 eV at the Pierre Auger Observatory Type Journal Article
Year 2012 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.
Volume 203 Issue 2 Pages 34 - 20pp
Keywords astroparticle physics; cosmic rays
Abstract A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0067-0049 ISBN Medium
Area Expedition Conference
Notes WOS:000312100500018 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1272
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 026 - 20pp
Keywords ultra high energy cosmic rays; cosmic ray experiments
Abstract To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Santo, C. E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000315576400026 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1360
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 009 - 19pp
Keywords ultra high energy cosmic rays; cosmic ray experiments
Abstract We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina, Email: auger_spokepersons@fnal.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000320161400011 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1497
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for a correlation between ANTARES neutrinos and Pierre Auger Observatory UHECRs arrival directions Type Journal Article
Year 2013 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 774 Issue 1 Pages 19 - 7pp
Keywords astroparticle physics; cosmic rays; neutrinos
Abstract A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E-2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 x 10(-8) GeV cm(-2) s(-1) per source is derived.
Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Camarena, F.; Ferri, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gesti Integrada Zones Costanere IGIC, E-46730 Gandia, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000323426700019 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1565
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Identifying clouds over the Pierre Auger Observatory using infrared satellite data Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 50-52 Issue Pages 92-101
Keywords Ultra-high energy cosmic rays; Pierre Auger Observatory; Extensive air showers; Atmospheric monitoring; Clouds; Satellites
Abstract We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000329271000011 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1690
Permanent link to this record
 

 
Author Di Mauro, M.; Donato, F.; Fornengo, N.; Lineros, R.A.; Vittino, A.
Title Interpretation of AMS-02 electrons and positrons data Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 006 - 33pp
Keywords ultra high energy cosmic rays; particle acceleration; cosmic ray theory; cosmic ray experiments
Abstract We perform a combined analysis of the recent AMS-02 data on electrons, positrons, electrons plus positrons and positron fraction, in a self-consistent framework where we realize a theoretical modeling of all the astrophysical components that can contribute to the observed fluxes in the whole energy range. The primary electron contribution is modeled through the sum of an average flux from distant sources and the fluxes from the local supernova remnants in the Green catalog. The secondary electron and positron fluxes originate from interactions on the interstellar medium of primary cosmic rays, for which we derive a novel determination by using AMS-02 proton and helium data. Primary positrons and electrons from pulsar wind nebulae in the ATNF catalog are included and studied in terms of their most significant (while loosely known) properties and under different assumptions (average contribution from the whole catalog, single dominant pulsar, a few dominant pulsars). We obtain a remarkable agreement between our various modeling and the AMS-02 data for all types of analysis, demonstrating that the whole AMS-02 leptonic data admit a self-consistent interpretation in terms of astrophysical contributions.
Address [Di Mauro, M.; Donato, F.; Fornengo, N.; Vittino, A.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy, Email: mattia.dimauro@to.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000334496500006 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1771
Permanent link to this record
 

 
Author Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M.
Title The isotropic radio background revisited Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 008 - 36pp
Keywords cosmic ray theory; galactic magnetic fields; dark matter theory
Abstract We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.
Address [Fornengo, Nicolao; Regis, Marco] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy, Email: fornengo@to.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000334496500008 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1772
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S.
Title A search for point sources of EeV photons Type Journal Article
Year 2014 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 789 Issue 2 Pages 160 - 12pp
Keywords astroparticle physics; cosmic rays; methods: data analysis
Abstract Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85 degrees to +20 degrees, in an energy range from 10(17.3) eV to 10(18.5) eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm(-2) s(-1), and no celestial direction exceeds 0.25 eV cm(-2) s(-1). These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.
Address [Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Homola, P.; Kuempel, D.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000338674900069 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1842
Permanent link to this record