|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at & RADIC;s=13 TeV Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 843 Issue Pages 137745 - 20pp
Keywords
Abstract Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb over bar bb over bar , bb over bar & tau;+& tau;- and bb over bar & gamma; & gamma; decay channels with single-Higgs boson analyses targeting the & gamma;& gamma;, Z Z*, W W *, & tau;+& tau;- and bb over bar decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton-proton collisions at & RADIC;s = 13 TeV and correspond to an integrated luminosity of 126-139 fb-1. The combination of the double-Higgs analyses sets an upper limit of & mu;HH < 2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (& lambda;HHH), values outside the interval -0.4 < & kappa;& lambda; = (& lambda;HHH/& lambda;SM H H H ) < 6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes -1.4 < & kappa;& lambda; < 6.1 at 95% CL.
Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001037066800001 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5666
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Furtado, J.; Hassanabadi, H.; Reis, J.A.A.S.
Title Thermal analysis of photon-like particles in rainbow gravity Type Journal Article
Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 42 Issue Pages 101310 - 8pp
Keywords Rainbow gravity; Thermodynamics; Bounds
Abstract This work is devoted to study the thermodynamic behavior of photon-like particles within the rainbow gravity formalism. To to do this, we chose two particular ansatzs to accomplish our calculations. First, we consider a dispersion relation which avoids UV divergences, getting a positive effective cosmological constant. We provide numerical analysis for the thermodynamic functions of the system and bounds are estimated. Furthermore, a phase transition is also expected for this model. Second, we consider a dispersion relation employed in the context of Gamma Ray Bursts. Remarkably, for this latter case, the thermodynamic properties are calculated in an analytical manner and they turn out to depend on the harmonic series Hn, gamma & UGamma; (z), polygamma & psi;n(z) and zeta Riemann functions & zeta;(z).
Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor & IFIC, Ctr Mixto Univ Valencia, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001062674000001 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5667
Permanent link to this record
 

 
Author Real, D.; Sanchez Losa, A.; Diaz, A.; Salesa Greus, F.; Calvo, D.
Title The Neutrino Mediterranean Observatory Laser Beacon: Design and Qualification Type Journal Article
Year 2023 Publication Applied Sciences-Basel Abbreviated Journal Appl. Sci.-Basel
Volume 13 Issue 17 Pages 9935 - 16pp
Keywords neutrino telescope; time calibration; laser beacon
Abstract This paper encapsulates details of the NEMO laser beacon's design, offering a profound contribution to the field of the time calibration of underwater neutrino telescopes. The mechanical design of the laser beacon, which operates at a depth of 3500 m, is presented, together with the design of the antibiofouling system employed to endure the operational pressure and optimize the operational range, enhancing its functionality and enabling time calibration among multiple towers. A noteworthy innovation central to this development lies in the battery system. This configuration enhances the device's portability, a crucial aspect in underwater operations. The comprehensive design of the laser beacon, encompassing the container housing, the requisite battery system for operation, electronics, and an effective antibiofouling system, is described in this paper. Additionally, this paper presents the findings of the laser beacon's qualification process.
Address [Real, Diego; Losa, Agustin Sanchez; Greus, Francisco Salesa; Calvo, David] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001063704500001 Approved no
Is ISI (up) yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5668
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N.
Title Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 11 Pages 112012 - 25pp
Keywords
Abstract A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the Oo10 thorn MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the & nu;e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section & sigma;oE & nu; thorn for charged-current & nu;e absorption on argon. In the context of a simulated extraction of supernova & nu;e spectral parameters from a toy analysis, we investigate the impact of & sigma;oE & nu; thorn modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on & sigma;oE & nu; thorn must be substantially reduced before the & nu;e flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires & sigma;oE & nu; thorn to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of & sigma;oE & nu; thorn . A direct measurement of low-energy & nu;e-argon scattering would be invaluable for improving the theoretical precision to the needed level.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001063367400002 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5669
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Opferkuch, T.; Stefanek, B.
Title Lattice simulations of non-minimally coupled scalar fields in the Jordan frame Type Journal Article
Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue 3 Pages 077 - 28pp
Keywords
Abstract The presence of scalar fields with non-minimal gravitational interactions of the form & xi;|& phi;|2R may have important implications for the physics of the early universe. We propose a procedure to solve the dynamics of non-minimally coupled scalar fields directly in the Jordan frame, where the non-minimal couplings are maintained explicitly. Our algorithm can be applied to lattice simulations that include minimally coupled fields and an arbitrary number of non-minimally coupled scalars, with the expansion of the universe sourced by all fields present. This includes situations when the dynamics become fully inhomogeneous, fully non-linear (due to e.g. backreaction or mode rescattering effects), and/or when the expansion of the universe is dominated by non-minimally coupled species. As an example, we study geometric preheating with a non-minimally coupled scalar spectator field when the inflaton oscillates following the end of inflation.
Address [Figueroa, Daniel G.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueroa@ific.uv.es;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:001065573600001 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5670
Permanent link to this record