|   | 
Details
   web
Record
Author Masud, M.; Bishai, M.; Mehta, P.
Title Extricating New Physics Scenarios at DUNE with Higher Energy Beams Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue Pages 352 - 9pp
Keywords
Abstract The proposed Deep Underground Neutrino Experiment (DUNE) utilizes a wide-band on-axis tunable muon-(anti) neutrino beam with a baseline of 1300 km to search for CP violation with high precision. Given the long baseline, DUNE is also sensitive to effects due to matter induced non-standard neutrino interactions (NSI) which can interfere with the standard three-flavor oscillation paradigm. Hence it is desirable to design strategies to disentangle effects due to NSI from standard oscillations. In this article, we exploit the tunability of the DUNE neutrino beam over a wide-range of energies to devise an experimental strategy for separating oscillation effects due to NSI from the standard three-flavor oscillation scenario. Using chi(2) analysis, we obtain an optimal combination of beam tunes and distribution of run times in neutrino and anti-neutrino modes that would enable DUNE to isolate new physics scenarios from the standard. We can distinguish scenarios at 3 sigma (5 sigma) level for almost all (similar to 50%) values of delta. To the best of our knowledge, our strategy is entirely new and has not been reported elsewhere.
Address [Masud, Mehedi] Univ Valencia, CSIC, Inst Fis Corpuscular, Astroparticle & High Energy Phys Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2E, E-46980 Valencia, Spain, Email: masud@ific.uv.es;
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000456392400033 Approved no
Is ISI (up) yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3891
Permanent link to this record