toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Garcia, A.R.; Mendoza, E.; Cano-Ott, D.; Nolte, R.; Martinez, T.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C. doi  openurl
  Title New physics model in GEANT4 for the simulation of neutron interactions with organic scintillation detectors Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 868 Issue Pages 73-81  
  Keywords Organic scintillator; Neutron detectors; GEANT4; BC501A; NE213; EJ301  
  Abstract The accurate determination of the response function of organic scintillation neutron detectors complements their experimental characterization. Monte Carlo simulations with GEANT4 can reduce the effort and cost implied, especially for complex detection systems for which the characterization is more challenging. Previous studies have reported on the inaccuracy of GEANT4 in the calculation of the neutron response of organic scintillation detectors above 6 MeV, due to an incomplete description of the neutron-induced alpha production reactions on carbon. We have improved GEANT4 in this direction by incorporating models and data from NRESP, an excellent Monte Carlo simulation tool developed at the Physikalisch-Technische Bundesanstalt (PTB), Germany, for the specific purpose of calculating the neutron response function of organic scintillation detectors. The results have been verified against simulations with NRESP and validated against Time-Of-Flight measurements with an NE213 detector at PTB. This work has potential applications beyond organic scintillation detectors, to other types of detectors where reactions induced by fast neutrons on carbon require an accurate description.  
  Address [Garcia, A. R.; Mendoza, E.; Cano-Ott, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: daniel.cano@ciemat.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN (up) Medium  
  Area Expedition Conference  
  Notes WOS:000408406700012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3250  
Permanent link to this record
 

 
Author Rasco, B.C.; Brewer, N.T.; Yokoyama, R.; Grzywacz, R.; Rykaczewski, K.P.; Tolosa-Delgado, A.; Agramunt, J.; Tain, J.L.; Algora, A.; Hall, O.; Griffin, C.; Davinson, T.; Phong, V.H.; Liu, J.; Nishimura, S.; Kiss, G.G.; Nepal, N.; Estrade, A. url  doi
openurl 
  Title The ORNL analysis technique for extracting beta-delayed multi-neutron branching ratios with BRIKEN Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 911 Issue Pages 79-86  
  Keywords Neutron detectors; Multi-neutron emission data analysis  
  Abstract Many choices are available in order to evaluate large radioactive decay networks. There are many parameters that influence the calculated beta-decay delayed single and multi-neutron emission branching fractions. We describe assumptions about the decay model, background, and other parameters and their influence on beta-decay delayed multi-neutron emission analysis. An analysis technique, the ORNL BRIKEN analysis procedure, for determining beta-delayed multi-neutron branching ratios in beta-neutron precursors produced by means of heavy-ion fragmentation is presented. The technique is based on estimating the initial activities of zero, one, and two neutrons occurring in coincidence with an ion-implant and beta trigger. The technique allows one to extract beta-delayed multi-neutron decay branching ratios measured with the He-3 BRIKEN neutron counter. As an example, two analyses of the beta-neutron emitter Cu-77 based on different a priori assumptions are presented along with comparisons to literature values.  
  Address [Rasco, B. C.; Brewer, N. T.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA, Email: brasco@utk.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN (up) Medium  
  Area Expedition Conference  
  Notes WOS:000450880200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3813  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva