toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agarwalla, S.K.; Bagchi, P.; Forero, D.V.; Tortola, M. url  doi
openurl 
  Title Probing non-standard interactions at Daya Bay Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 060 - 33pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by theta(13), making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and theta(13) that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds similar to 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.  
  Address [Agarwalla, Sanjib Kumar; Bagchi, Partha] Inst Phys, Bhubaneswar 751005, Orissa, India, Email: sanjib@iopb.res.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN (up) Medium  
  Area Expedition Conference  
  Notes WOS:000363504900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2427  
Permanent link to this record
 

 
Author Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Sensitivities to neutrino electromagnetic properties at the TEXONO experiment Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 750 Issue Pages 459-465  
  Keywords Reactor neutrinos; Coherent elastic neutrino-nucleus scattering (CENNS); Weak mixing angle; Neutrino magnetic moment; Neutrino charge radius; Quenching factor  
  Abstract The possibility of measuring neutral-current coherent elastic neutrino nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.  
  Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Div Theoret Phys, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN (up) Medium  
  Area Expedition Conference  
  Notes WOS:000364250600075 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2472  
Permanent link to this record
 

 
Author Cañas, B.C.; Miranda, O.G.; Parada, A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Updating neutrino magnetic moment constraints Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 753 Issue Pages 191-198  
  Keywords  
  Abstract In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda(i) and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10(-11) mu(B) at 90% C.L. This corresponds to the individual transition magnetic moment constraints: vertical bar Lambda(1)vertical bar <= 5.6 x10(-11)mu(B), vertical bar Lambda(2)vertical bar <= 4.0 x10(-11)mu(B), and vertical bar Lambda(3)vertical bar <= 3.1 x10(-11)mu B(90% C. L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.  
  Address [Canas, B. C.; Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN (up) Medium  
  Area Expedition Conference  
  Notes WOS:000368783600029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2551  
Permanent link to this record
 

 
Author Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title New Ambiguity in Probing CP Violation in Neutrino Oscillations Type Journal Article
  Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 117 Issue 6 Pages 061804 - 5pp  
  Keywords  
  Abstract If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new CP phase phi associated with nonunitarity. This leads to an ambiguity in extracting the “standard” three-neutrino phase delta(CP), which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of delta(CP).  
  Address [Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN (up) Medium  
  Area Expedition Conference  
  Notes WOS:000381442800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2812  
Permanent link to this record
 

 
Author de Salas, P.F.; Lineros, R.A.; Tortola, M. url  doi
openurl 
  Title Neutrino propagation in the Galactic dark matter halo Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 12 Pages 123001 - 14pp  
  Keywords  
  Abstract Neutrino oscillations are a widely observed and well-established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the impact of new interactions between neutrinos and the dark matter present in the Milky Way on the neutrino oscillation pattern. The dark matter-neutrino interaction is modeled by using an effective coupling proportional to the Fermi constant GF with no further restrictions on its flavor structure. For the galactic dark matter profile we consider a homogeneous distribution as well as several density profiles, estimating in all cases the size of the interaction required to get an observable effect at different neutrino energies. Our discussion is mainly focused in the PeV neutrino energy range, to be explored in observatories like IceCube and KM3NeT. The obtained results may be interpreted in terms of a light O(sub-eV-keV) or weakly interacting massive particlelike dark matter particle or as a new interaction with a mediator of O(sub-eV-keV) mass.  
  Address [de Salas, P. F.; Lineros, R. A.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular CSIC, Parc Cient,Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN (up) Medium  
  Area Expedition Conference  
  Notes WOS:000389028000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2873  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva