|   | 
Details
   web
Records
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R.
Title Generalizing the relativistic quantization condition to include all three-pion isospin channels Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 047 - 49pp
Keywords Lattice QCD; Scattering Amplitudes
Abstract We present a generalization of the relativistic, finite-volume, three-particle quantization condition for non-identical pions in isosymmetric QCD. The resulting formalism allows one to use discrete finite-volume energies, determined using lattice QCD, to constrain scattering amplitudes for all possible values of two- and three-pion isospin. As for the case of identical pions considered previously, the result splits into two steps: the first defines a non-perturbative function with roots equal to the allowed energies, E-n(L), in a given cubic volume with side-length L. This function depends on an intermediate three-body quantity, denoted K-df;3, which can thus be constrained from lattice QCD input. The second step is a set of integral equations relating K-df,K-3 to the physical scattering amplitude, M-3. Both of the key relations, E-n(L) <-> K-df,K-3 and K-df,K-3 <-> M-3, are shown to be block-diagonal in the basis of definite three-pion isospin, I-pi pi pi, so that one in fact recovers four independent relations, corresponding to I-pi pi pi = 0; 1; 2; 3. We also provide the generalized threshold expansion of K-df,K-3 for all channels, as well as parameterizations for all three-pion resonances present for I-pi pi pi = 0 and I-pi pi pi = 1. As an example of the utility of the generalized formalism, we present a toy implementation of the quantization condition for I-pi pi pi = 0, focusing on the quantum numbers of the omega and h(1) resonances.
Address [Hansen, Maxwell T.] Univ Geneva, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: maxwell.hansen@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN (up) Medium
Area Expedition Conference
Notes WOS:000551981200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4474
Permanent link to this record
 

 
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R.
Title Decay amplitudes to three hadrons from finite-volume matrix elements Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 113 - 44pp
Keywords Lattice QCD; Kaon Physics
Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K -> 3 pi weak decay, the isospin-breaking eta -> 3 pi QCD transition, and the electromagnetic gamma (*) -> 3 pi amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g – 2.
Address [Hansen, Maxwell T.] Univ Edinburgh, Sch Phys & Astron, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland, Email: maxwell.hansen@ed.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN (up) Medium
Area Expedition Conference
Notes WOS:000640574400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4789
Permanent link to this record
 

 
Author Huang, G.Y.; Lindner, M.; Martinez-Mirave, P.; Sen, M.
Title Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 3 Pages 033004 - 18pp
Keywords
Abstract We investigate a consistent scenario of time-varying neutrino masses, and discuss its impact on cosmology, beta decay, and neutrino oscillation experiments. Such time-varying masses are assumed to be generated by the coupling between a sterile neutrino and an ultralight scalar field, which in turn affects the light neutrinos by mixing. We demonstrate how various cosmological bounds, such as those coming from big bang nucleosynthesis, the cosmic microwave background, as well as large scale structures, can be evaded in this model. This scenario can be further constrained using multiple terrestrial experiments. In particular, for beta-decay experiments like KATRIN, nontrivial distortions to the electron spectrum can be induced, even when time-variation is fast and it gets averaged. Furthermore, the presence of time-varying masses of sterile neutrinos will alter the interpretation of light sterile neutrino parameter space in the context of the reactor and gallium anomalies. In addition, we also study the impact of such time-varying neutrino masses on results from the BEST collaboration, which have recently strengthened the gallium anomaly. If confirmed, we find that the time-varying neutrino mass hypothesis could give a better fit to the recent BEST data.
Address [Huang, Guo-yuan; Lindner, Manfred; Sen, Manibrata] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: guoyuan.huang@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN (up) Medium
Area Expedition Conference
Notes WOS:000858614800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5363
Permanent link to this record
 

 
Author Capozzi, F.; Chakraborty, M.; Chakraborty, S.; Sen, M.
Title Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 8 Pages 083011 - 9pp
Keywords
Abstract In the dense supernova environment, neutrinos can undergo fast flavor conversions which depend on the large neutrino-neutrino interaction strength. It has been recently shown that both their presence and outcome can be affected when passing from the commonly used three neutrino species approach to the more general one with six species. Here, we build up on a previous work performed on this topic and perform a numerical simulation of flavor evolution in both space and time, assuming six neutrino species. We find that the results presented in our previous work remain qualitatively the same even for flavor evolution in space and time. This emphasizes the need for going beyond the simplistic approximation with three species when studying fast flavor conversions.
Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, CSIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN (up) Medium
Area Expedition Conference
Notes WOS:000875132200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5396
Permanent link to this record
 

 
Author Abreu, L.M.; Navarra, F.S.; Nielsen, M.; Vieira, H.P.L.
Title Multiplicity of Z(cs)(3985) in heavy ion collisions Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 11 Pages 114013 - 9pp
Keywords
Abstract Using the coalescence model we compute the multiplicity of Z(cs)(3985)(-) (treated as a compact tetraquark) at the end of the quark gluon plasma phase in heavy ion collisions. Then we study the time evolution of this state in the hot hadron gas phase. We calculate the thermal cross sections for the collisions of the Z(cs)(3985)(-) with light mesons using effective Lagrangians and form factors derived from QCD sum rules for the vertices Z(cs)(D) over bar (s)* D and Z(cs)(D) over bar D-s*. We solve the kinetic equation and find how the Z(cs)(3985)(-) multiplicity is affected by the considered reactions during the expansion of the hadronic matter. A comparison with the statistical hadronization model predictions is presented. Our results show that the tetraquark yield increases by a factor of about 2-3 from the hadronization to the kinetic freeze-out. We also make predictions for the dependence of the Z(cs)(3985)(-) yield on the centrality, the center-of-mass energy and the charged hadron multiplicity measured at midrapidity [dN(ch)/d eta(eta < 0.5)].
Address [Abreu, L. M.; Vieira, H. P. L.] Univ Fed Bahia, Inst Fis, Campus Univ Ondina, Salvador BR-40210340, BA, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN (up) Medium
Area Expedition Conference
Notes WOS:001055200300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5649
Permanent link to this record