Bombacigno, F., De Angelis, M., van de Bruck, C., & Giare, W. (2025). Inflation in non-local hybrid metric-Palatini gravity. J. Cosmol. Astropart. Phys., 05(5), 025–30pp.
Abstract: Within the framework of hybrid metric-Palatini gravity, we incorporate non-localities introduced via the inverse of the d'Alembert operators acting on the scalar curvature. We analyze the dynamical structure of the theory and, adopting a scalar-tensor perspective, assess the stability conditions to ensure the absence of ghost instabilities. Focusing on a special class of well-defined hybrid actions where local and non-local contributions are carried by distinct types of curvature we investigate the feasibility of inflation within the resulting Einstein-frame multi-field scenario. We examine how the non-minimal kinetic couplings between the fields, reflecting the non-local structure of the original frame, influence the number of e-folds and the field trajectories. To clarify the physical interpretation of our results, we draw analogies with benchmark single-field inflation scenarios that include spectator fields.
|
Girones, Z., Marchetti, A., Mena, O., Pena-Garay, C., & Rius, N. (2010). Cosmological data analysis of f(R) gravity models. J. Cosmol. Astropart. Phys., 11(11), 004–18pp.
Abstract: A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.
|
Olmo, G. J. (2011). Palatini actions and quantum gravity phenomenology. J. Cosmol. Astropart. Phys., 10(10), 018–15pp.
Abstract: We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.
|
Olmo, G. J. (2011). Palatini approach to modified gravity: f(R) theories and beyond. Int. J. Mod. Phys. D, 20(4), 413–462.
Abstract: We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
|
Galli, P., Ortin, T., Perz, J., & Shahbazi, C. S. (2012). From supersymmetric to non-supersymmetric black holes. Fortschritte Phys.-Prog. Phys., 60(9-10), 1026–1029.
Abstract: Methods similar to those used for obtaining supersymmetric black hole solutions can be employed to find also non-supersymmetric solutions. We briefly review some of them, with the emphasis on the non-extremal deformation ansatz of [1].
|