toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Oliver, S.; Gimenez-Alventosa, V.; Berumen, F.; Gimenez, V.; Beaulieu, L.; Ballester, F.; Vijande, J. doi  openurl
  Title Benchmark of the PenRed Monte Carlo framework for HDR brachytherapy Type Journal Article
  Year 2023 Publication Zeitschrift für Medizinische Physik Abbreviated Journal Z. Med. Phys.  
  Volume 33 Issue 4 Pages 511-528  
  Keywords Monte Carlo; PenRed; Brachytherapy; DICOM; Medical physics  
  Abstract Purpose: The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. Methods and materials: Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. Results: The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (K). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within +/- 1%(+/- 0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within +/- 1%(+/- 0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within +/- 0.2%for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differ-ences. Dose-volume histograms were in agreement with the reference data.Conclusions: PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.  
  Address [Oliver, S.] Univ Politecn Valencia, Inst Segur Ind, Radiofis & Medioambiental ISIRYM, Camide Vera s n, Valencia 46022, Spain, Email: sanolgi@upvnet.upv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0939-3889 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001137118400001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 5885  
Permanent link to this record
 

 
Author Piriz, G.H.; Gonzalez-Sprinberg, G.A.; Ballester, F.; Vijande, J. doi  openurl
  Title Dosimetry of Large Field Valencia applicators for Cobalt-60-based brachytherapy Type Journal Article
  Year 2024 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 51 Issue Pages 5094-5098  
  Keywords dosimetry; Monte Carlo; skin brachytherapy; Valencia applicators  
  Abstract BackgroundNon-melanoma skin cancer is one of the most common types of cancer and one of the main approaches is brachytherapy. For small lesions, the treatment of this cancer with brachytherapy can be done with two commercial applicators, one of these is the Large Field Valencia Applicators (LFVA).PurposeThe aim of this study is to test the capabilities of the LFVA to use clinically 60Co sources instead of the 192Ir ones. This study was designed for the same dwell positions and weights for both sources.MethodsThe Penelope Monte Carlo code was used to evaluate dose distribution in a water phantom when a 60Co source is considered. The LFVA design and the optimized dwell weights reported for the case of 192Ir are maintained with the only exception of the dwell weight of the central position, that was increased. 2D dose distributions, field flatness, symmetry and the leakage dose distribution around the applicator were calculated.ResultsWhen comparing the dose distributions of both sources, field flatness and symmetry remain unchanged. The only evident difference is an increase of the penumbra regions for all depths when using the 60Co source. Regarding leakage, the maximum dose within the air volume surrounding the applicator is in the order of 20% of the prescription dose for the 60Co source, but it decreases to less than 5% at about 1 cm distance.ConclusionsFlatness and symmetry remains unaltered as compared with 192Ir sources, while an increase in leakage has been observed. This proves the feasibility of using the LFVA in a larger range of clinical applications.  
  Address [Piriz, Gustavo H.; Gonzalez-Sprinberg, Gabriel A.] Univ Republica, Fac Sci, Med Phys Unit, Montevideo, Uruguay, Email: ghpiriz@gmail.com  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001187737100001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 6011  
Permanent link to this record
 

 
Author Richard, J.M.; Valcarce, A.; Vijande, J. url  doi
openurl 
  Title Resonances in the Quark Model Type Journal Article
  Year 2024 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.  
  Volume 65 Issue 3 Pages 71 - 11pp  
  Keywords  
  Abstract A discussion is presented of the estimates of the energy and width of resonances in constituent models, with focus on the tetraquark states containing heavy quarks.  
  Address [Richard, Jean-Marc] Univ Claude Bernard Lyon 1, Inst Phys Infinis Lyon 2, CNRS, IN2P3, CNRS-IN2P3,4 rue Enr Fermi, F-69622 Villeurbanne, France, Email: j-m.richard@ip2i.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Wien Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001260738300001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 6180  
Permanent link to this record
 

 
Author Fernandez-Carames, T.; Valcarce, A.; Vijande, J. doi  openurl
  Title Charged charmonium molecules Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 5 Pages 054032 - 5pp  
  Keywords  
  Abstract We make use of a self-consistent quark-model based study of four-quark charmonium-like states to interpret recent charmonium experimental data. We conclude that there exists a D*(D) over bar* meson-meson molecule with quantum numbers (I-G) J(PC) = (1(-))2(++). Our study confirms the presence of charged charmonium-like resonances on the excited charmonium spectrum. We find support from recent experimental data by the Belle Collaboration [R. Mizuk et al. (Belle Collaboration), Phys. Rev. D 78, 072004 (2008)]. Confirmation of the experimental data by the Belle Collaboration and the determination of the quantum numbers of the new structures would help in discriminating among different theoretical models and would give further support to the theoretical analysis of T. Fernandez-Carames, A. Valcarce, and J. Vijande [Phys. Rev. Lett. 103, 222001 (2009)].  
  Address [Carames, T. F.; Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282271100006 Approved no  
  Is ISI yes International Collaboration (down) no  
  Call Number IFIC @ elepoucu @ Serial 366  
Permanent link to this record
 

 
Author Fernandez-Carames, T.; Valcarce, A.; Vijande, J. doi  openurl
  Title Doubly charmed exotic mesons: A gift of nature? Type Journal Article
  Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 699 Issue 4 Pages 291-295  
  Keywords Exotic mesons; Quark model; Multiquark states  
  Abstract We study doubly charmed exotic states by solving the scattering problem of two D mesons. Our results point to the existence of a stable isoscalar doubly charmed meson with quantum numbers (I)J(P) = (0)1(+). We perform a thorough comparison to the results obtained within the hyperspherical harmonic formalism. Such exotic states could be measured at LHC and RHIC. Their experimental observation would, for the first time, confirm the contribution of multiquark structures to hadron spectroscopy.  
  Address [Carames, T. F.; Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: valcarce@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291073200016 Approved no  
  Is ISI yes International Collaboration (down) no  
  Call Number IFIC @ elepoucu @ Serial 634  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva