|   | 
Details
   web
Records
Author Hirn, J.; Garcia, J.E.; Montesinos-Navarro, A.; Sanchez-Martin, R.; Sanz, V.; Verdu, M.
Title A deep Generative Artificial Intelligence system to predict species coexistence patterns Type Journal Article
Year 2022 Publication Methods in Ecology and Evolution Abbreviated Journal Methods Ecol. Evol.
Volume 13 Issue Pages 1052-1061
Keywords artificial intelligence; direct interactions; generative adversarial networks; indirect interactions; species coexistence; variational AutoEncoders
Abstract Predicting coexistence patterns is a current challenge to understand diversity maintenance, especially in rich communities where these patterns' complexity is magnified through indirect interactions that prevent their approximation with classical experimental approaches. We explore cutting-edge Machine Learning techniques called Generative Artificial Intelligence (GenAI) to predict species coexistence patterns in vegetation patches, training generative adversarial networks (GAN) and variational AutoEncoders (VAE) that are then used to unravel some of the mechanisms behind community assemblage. The GAN accurately reproduces real patches' species composition and plant species' affinity to different soil types, and the VAE also reaches a high level of accuracy, above 99%. Using the artificially generated patches, we found that high-order interactions tend to suppress the positive effects of low-order interactions. Finally, by reconstructing successional trajectories, we could identify the pioneer species with larger potential to generate a high diversity of distinct patches in terms of species composition. Understanding the complexity of species coexistence patterns in diverse ecological communities requires new approaches beyond heuristic rules. Generative Artificial Intelligence can be a powerful tool to this end as it allows to overcome the inherent dimensionality of this challenge.
Address [Hirn, Johannes; Enrique Garcia, Jose; Sanz, Veronica] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: miguel.verdu@ext.uv.es
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-210x ISBN Medium
Area Expedition Conference
Notes WOS:000765239700001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5155
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title Quantum correlations across the horizon in acoustic and gravitational black holes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 4 Pages 045010 - 20pp
Keywords
Abstract We investigate, within the framework of quantum field theory in curved space, the correlations across the horizon of a black hole in order to highlight the particle-partner pair creation mechanism at the origin of Hawking radiation. The analysis concerns both acoustic black holes, formed by Bose-Einstein condensates, and gravitational black holes. More precisely, we have considered a typical acoustic black hole metric with two asymptotic homogeneous regions and the Schwarzschild metric as describing a gravitational black hole. By considering equal-time correlation functions, we find a striking disagreement between the two cases: the expected characteristic peak centered along the trajectories of the Hawking particles and their partners seems to appear only for the acoustic black hole and not for the gravitational Schwarzschild one. The reason for that is the existence of a quantum atmosphere displaced from the horizon as the locus of origin of Hawking radiation together, and this is the crucial aspect, with the presence of a central singularity in the gravitational case swallowing everything is trapped inside the horizon. Correlations, however, are not absent in the gravitational case; to see them, one simply has to consider correlation functions at unequal times, which indeed display the expected peak.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Bologna, Italy, Email: balbinot@bo.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000761172600005 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5156
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Evidence for a New Structure in the J/psi p and J/psi(p)over-bar Systems in B-s(0) -> J/psi p(p)over-bar Decays Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue 6 Pages 062001 - 11pp
Keywords
Abstract An amplitude analysis of flavor-untagged B-s(0) -> J=psi p (p) over bar decays is performed using a sample of 797 +/- 31 decays reconstructed with the LHCb detector. The data, collected in proton-proton collisions between 2011 and 2018, correspond to an integrated luminosity of 9 fb(-1). Evidence for a new structure in the J=psi p and J=psi(p) over bar systems with a mass of 4337(-4-2)(+7+2) MeV and a width of 29(-12-14)(+26+14) MeV is found, where the first uncertainty is statistical and the second systematic, with a significance in the range of 3.1 to 3.7 sigma, depending on the assigned J(P) hypothesis.
Address [Aaij, R.; Leite, J. Baptist; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; Dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000759202300001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5157
Permanent link to this record
 

 
Author Fuster-Martinez, N.; Assmann, R.W.; Bruce, R.; Giovannozzi, M.; Hermes, P.; Mereghetti, A.; Mirarchi, D.; Redaelli, S.; Wenninger, J.
Title Beam-based aperture measurements with movable collimator jaws as performance booster of the CERN Large Hadron Collider Type Journal Article
Year 2022 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 137 Issue 3 Pages 305 - 20pp
Keywords
Abstract The beam aperture of a particle accelerator defines the clearance available for the circulating beams and is a parameter of paramount importance for the accelerator performance. At the CERN Large Hadron Collider (LHC), the knowledge and control of the available aperture is crucial because the nominal proton beams carry an energy of 362 MJ stored in a superconducting environment. Even a tiny fraction of beam losses could quench the superconducting magnets or cause severe material damage. Furthermore, in a circular collider, the performance in terms of peak luminosity depends to a large extent on the aperture of the inner triplet quadrupoles, which are used to focus the beams at the interaction points. In the LHC, this aperture represents the smallest aperture at top-energy with squeezed beams and determines the maximum potential reach of the peak luminosity. Beam-based aperture measurements in these conditions are difficult and challenging. In this paper, we present different methods that have been developed over the years for precise beam-based aperture measurements in the LHC, highlighting applications and results that contributed to boost the operational LHC performance in Run 1 (2010-2013) and Run 2 (2015-2018)
Address [Fuster-Martinez, N.] Inst Fis Corpuscular CSIC UV, Valencia, Spain, Email: nuria.fuster@ific.uv.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000764734000003 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5160
Permanent link to this record
 

 
Author Hagedorn, C.; Kriewald, J.; Orloff, J.; Teixeira, A.M.
Title Flavour and CP symmetries in the inverse seesaw Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 3 Pages 194 - 32pp
Keywords
Abstract We consider an inverse seesaw mechanism of neutrino mass generation in which the Standard Model is extended by 3 + 3 (heavy) sterile states, and endowed with a flavour symmetry G(f), G(f) = Delta(3n(2)) or G(f) = Delta(6n(2)), and a CP symmetry. These symmetries are broken in a peculiar way, so that in the charged lepton sector a residual symmetry G(l) is preserved, while the neutral fermion sector remains invariant under the residual symmetry G(nu) = Z(2) x CP. We study the concrete setup, where the Majorana mass term for three of the sterile states conserves G(nu), while the remaining mass terms (i.e. couplings of left-handed leptons and heavy sterile states, as well as the Dirac-type couplings among the latter) do not break the flavour or CP symmetry. We perform a comprehensive analysis of lepton mixing for different classes of residual symmetries, giving examples for each of these, and study in detail the impact of the additional sterile states on the predictions for lepton mixing. We further confront our results with those obtained in the model-independent scenario, in which the light neutrino mass matrix leaves the residual symmetry G(nu) intact. We consider the phenomenological impact of the inverse seesaw mechanism endowed with flavour and CP symmetries, in particular concerning effects of non-unitarity of the lepton mixing matrix (which strongly constrain the parameter space of the scenario), prospects for neutrinoless double beta decay and for charged lepton flavour violating processes.
Address [Hagedorn, C.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: jonathan.kriewald@clermont.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000764106400004 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5161
Permanent link to this record