|   | 
Details
   web
Records
Author n_TOF Collaboration (Sosnin, N.V. et al.); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the 77Se(n,gamma) cross section up to 200 keV at the n_TOF facility at CERN Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 6 Pages 065805 - 9pp
Keywords
Abstract The 77Se(n,gamma) reaction is of importance for 77Se abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the 77Se radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT = 5 keV and kT = 100 keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in 77Se abundances produced through the slow neutron capture process in selected stellar models of 15M0 and 2M0, respectively, compared to using previous recommendation of the cross section.
Address [V. Sosnin, N.; Lederer-Woods, C.; Garg, R.; Dietz, M.; Murphy, A. St. J.; Lonsdale, S.; Woods, P. J.] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Scotland, Email: nsosnin@ed.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001023903800002 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5599
Permanent link to this record
 

 
Author n_TOF Collaboration (Michalopoulou, V. et al); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the neutron-induced fission cross section of Th-230 at the CERN n_TOF facility Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 1 Pages 014616 - 15pp
Keywords
Abstract The neutron-induced fission cross section of Th-230 has been measured at the neutron time-of-flight facility n_TOF located at CERN. The experiment was performed at the experimental area EAR-1 with a neutron flight path of 185 m, using Micromegas detectors for the detection of the fission fragments. The Th-230(n, f ) cross section was determined relative to the U-235(n, f ) one, covering the energy range from the fission threshold up to 400 MeV. The results from the present work are compared with existing cross-section datasets and the observed discrepancies are discussed and analyzed. Finally, using the code EMPIRE 3.2.3 a theoretical study, based on the statistical model, was performed leading to a satisfactory reproduction of the experimental results with the proper tuning of the respective parameters, while for incident neutron energy beyond 200 MeV the fission of( 230)Th was described by Monte Carlo simulations.
Address [Michalopoulou, V; Stamatopoulos, A.; Diakaki, M.; Vlastou, R.; Kokkoris, M.; Tassan-Got, L.] Natl Tech Univ Athens, Dept Phys, Zografou Campus, Athens, Greece, Email: veatriki.michalopoulou@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001063908000001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5700
Permanent link to this record
 

 
Author n_TOF Collaboration (Torres-Sanchez, P. et al); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the 14N(n, p) 14C cross section at the CERN n_TOF facility from subthermal energy to 800 keV Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 6 Pages 064617 - 15pp
Keywords
Abstract Background: The 14N(n, p) 14C reaction is of interest in neutron capture therapy, where nitrogen-related dose is the main component due to low-energy neutrons, and in astrophysics, where 14N acts as a neutron poison in the s process. Several discrepancies remain between the existing data obtained in partial energy ranges: thermal energy, keV region, and resonance region. Purpose: We aim to measure the 14N(n, p) 14C cross section from thermal to the resonance region in a single measurement for the first time, including characterization of the first resonances, and provide calculations of Maxwellian averaged cross sections (MACS). Method: We apply the time-of-flight technique at Experimental Area 2 (EAR-2) of the neutron time-of-flight (n_TOF) facility at CERN. 10B(n, & alpha;) 7Li and 235U(n, f ) reactions are used as references. Two detection systems are run simultaneously, one on beam and another off beam. Resonances are described with the R-matrix code SAMMY. Results: The cross section was measured from subthermal energy to 800 keV, resolving the first two resonances (at 492.7 and 644 keV). A thermal cross section was obtained (1.809 & PLUSMN; 0.045 b) that is lower than the two most recent measurements by slightly more than one standard deviation, but in line with the ENDF/B-VIII.0 and JEFF-3.3 evaluations. A 1/v energy dependence of the cross section was confirmed up to tens of keV neutron energy. The low energy tail of the first resonance at 492.7 keV is lower than suggested by evaluated values, while the overall resonance strength agrees with evaluations. Conclusions: Our measurement has allowed determination of the 14N(n, p) cross section over a wide energy range for the first time. We have obtained cross sections with high accuracy (2.5%) from subthermal energy to 800 keV and used these data to calculate the MACS for kT = 5 to kT = 100 keV.
Address [Torres-Sanchez, Pablo; Praena, Javier; Porras, Ignacio; Ogallar, Francisco] Univ Granada, Granada, Spain, Email: pablotorres@ugr.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001063209900001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5701
Permanent link to this record
 

 
Author Tagliente, G. et al; Babiano-Suarez, V.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title High-resolution cross section measurements for neutron interactions on 89Y with incident neutron energies up to 95 keV Type Journal Article
Year 2024 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 60 Issue 1 Pages 21 - 18pp
Keywords
Abstract The cross section of the Y-89(n,gamma) reaction has important implications in nuclear astrophysics and for advanced nuclear technology. Given its neutron magic number N = 50 and a consequent small neutron capture crosssection,89Y represents one of the key nuclides for the stellars-process. It acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier elements. Moreover, it is located at the overlapping region, where both the weak and mains-process components take place.Y-89, the only stable yttrium isotope, is also used in innovative nuclear reactors. Neutron capture and transmission measurements were per-formed at the time-of-flight facilities n_TOF at CERN and GELINA at JRC-Geel. Resonance parameters of individual resonances were extracted from a resonance analysis of the experimental transmission and capture yields, up to a neutron incident energy of 95 keV. Even though a comparison with results reported in the literature shows differences in resonance parameters, the present data are consistent with the Maxwellian averaged cross section suggested by the astro-physical database KADoNiS.
Address [Tagliente, G.; Damone, L. A.; Barbagallo, M.; Colonna, N.; Mastromarco, M.; Mazzone, A.; Variale, V.] Ist Nazl Fis Nucl, Bari, Italy, Email: giuseppe.tagliente@ba.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001157129400001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5946
Permanent link to this record
 

 
Author n_TOF Collaboration (Alcayne, V. et al); Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Ladarescu, I.
Title A Segmented Total Energy Detector (sTED) optimized for (n,γ) cross-section measurements at n_TOF EAR2 Type Journal Article
Year 2024 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.
Volume 217 Issue Pages 11pp
Keywords Neutron capture; PHWT; Scintillation detectors; Monte Carlo simulation
Abstract The neutron time-of-flight facility nTOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at nTOF EAR2.
Address [Alcayne, V.; Cano-Ott, D.; Garcia, J.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A. Perez; Plaza, J.; Sanchez-Caballero, A.; Mendoza, E.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain, Email: victor.alcayne@ciemat.es
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-806x ISBN Medium
Area Expedition Conference
Notes WOS:001185584800001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5999
Permanent link to this record