|   | 
Details
   web
Records
Author Aguilera-Verdugo, J.J.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Mathematical properties of nested residues and their application to multi-loop scattering amplitudes Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 112 - 42pp
Keywords NLO Computations; QCD Phenomenology
Abstract The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general compact and elegant proof, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in ref. [1], encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in ref. [2].
Address [Jesus Aguilera-Verdugo, J.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000620526300001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 4726
Permanent link to this record
 

 
Author Mateu, V.; Rodrigo, G.
Title Oriented event shapes at (NLL)-L-3 + O(alpha(2)(S)) Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 030 - 29pp
Keywords Jets; NLO Computations
Abstract We analyze oriented event-shapes in the context of Soft-Collinear Effective Theory (SCET) and in fixed-order perturbation theory. Oriented event-shapes are distributions of event-shape variables which are differential on the angle theta(T) that the thrust axis forms with the electron-positron beam. We show that at any order in perturbation theory and for any event shape, only two angular structures can appear: F-0 = 3/8 (1+cos(2) theta(T)) and F-1 = (1 – 3 cos(2) theta(T)). When integrating over theta(T) to recover the more familiar event-shape distributions, only F-0 survives. The validity of our proof goes beyond perturbation theory, and hence only these two structures are present at the hadron level. The proof also carries over massive particles. Using SCET techniques we show that singular terms can only arise in the F-0 term. Since only the hard function is sensitive to the orientation of the thrust axis, this statement applies also for recoil-sensitive variables such as Jet Broadening. We show how to carry out resummation of the singular terms at (NLL)-L-3 for Thrust, Heavy-Jet Mass, the sum of the Hemisphere Masses and C-parameter by using existing computations in SCET. We also compute the fixed-order distributions for these event-shapes at O(alpha(S)) analytically and at O(alpha(2)(S)) with the program Event2.
Address [Mateu, Vicent; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, E-46980 Paterna, Valencia, Spain, Email: mateu@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000326699400001 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 1675
Permanent link to this record
 

 
Author Sborlini, G.F.R.; Driencourt-Mangin, F.; Rodrigo, G.
Title Four-dimensional unsubtraction with massive particles Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 162 - 34pp
Keywords NLO Computations
Abstract We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with a scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results presented in this paper are suitable for the application of the method to any multipartonic process.
Address [Sborlini, German F. R.; Driencourt-Mangin, Felix; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: german.sborlini@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000387374000001 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 2853
Permanent link to this record
 

 
Author Llanes Jurado, J.; Rodrigo, G.; Torres Bobadilla, W.J.
Title From Jacobi off-shell currents to integral relations Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 122 - 22pp
Keywords NLO Computations; QCD Phenomenology
Abstract In this paper, we study off-shell currents built from the Jacobi identity of the kinematic numerators of gg -> X with X = ss, q (q) over bar, gg. We find that these currents can be schematically written in terms of three-point interaction Feynman rules. This representation allows for a straightforward understanding of the Colour-Kinematics duality as well as for the construction of the building blocks for the generation of higher-multiplicity tree-level and multi-loop numerators. We also provide one-loop integral relations through the Loop-Tree duality formalism with potential applications and advantages for the computation of relevant physical processes at the Large Hadron Collider. We illustrate these integral relations with the explicit examples of QCD one-loop numerators of gg -> ss.
Address [Llanes Jurado, Jose; Rodrigo, German; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: jollaju@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000418560700004 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 3431
Permanent link to this record