|   | 
Details
   web
Records
Author Afonso, V.I.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title An infinite class of exact rotating black hole metrics of modified gravity Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 052 - 14pp
Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.
Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Academ Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000776994500002 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5185
Permanent link to this record
 

 
Author Abbar, S.; Capozzi, F.
Title Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 051 - 13pp
Keywords supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas
Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.
Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000776551600002 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5186
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title HAWC Study of the Ultra-high-energy Spectrum of MGRO J1908+06 Type Journal Article
Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 928 Issue 2 Pages 116 - 13pp
Keywords
Abstract We report TeV gamma-ray observations of the ultra-high-energy source MGRO J1908+06 using data from the High Altitude Water Cherenkov Observatory. This source is one of the highest-energy known gamma-ray sources, with emission extending past 200 TeV. Modeling suggests that the bulk of the TeV gamma-ray emission is leptonic in nature, driven by the energetic radio-faint pulsar PSR J1907+0602. Depending on what assumptions are included in the model, a hadronic component may also be allowed. Using the results of the modeling, we discuss implications for detection prospects by multi-messenger campaigns.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: kmalone@lanl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000776453700001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5187
Permanent link to this record
 

 
Author Belle II Collaboration (Abudinen, F. et al); Marinas, C.
Title B-flavor tagging at Belle II Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 4 Pages 283 - 29pp
Keywords
Abstract We report on new flavor tagging algorithms developed to determine the quark-flavor content of bottom (B) mesons at Belle II. The algorithms provide essential inputs for measurements of quark-flavor mixing and charge-parity violation. We validate and evaluate the performance of the algorithms using hadronic B decays with flavor-specific final states reconstructed in a data set corresponding to an integrated luminosity of 62.8 fb(-1), collected at the gamma(4S) resonance with the Belle II detector at the SuperKEKB collider. We measure the total effective tagging efficiency to be epsilon(eff) = (30.0 +/- 1.2(stat) +/- 0.4(syst))% for a category-based algorithm and epsilon(eff) = (28.8 +/- 1.2(stat) +/- 0.4(syst))% for a deep-learning-based algorithm.
Address [Lautenbach, K.; Zani, L.] Aix Marseille Univ, CPPM, CNRS IN2P3, F-13288 Marseille, France
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000777159100005 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5188
Permanent link to this record
 

 
Author Ikeno, N.; Molina, R.; Oset, E.
Title Zcs states from the D*s over bar D* and J=psi K* coupled channels: Signal in B+ -> J=psi phi K+ decay Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 1 Pages 014012 - 13pp
Keywords
Abstract We study the D*s over bar D* system in connection with the J=psi K* in coupled channels and observe that, within reasonable values of the cutoff used to regularize the loops, the system does not develop a bound state. However, the JP = 2+ channel has enough attraction to create a strong cusp structure that shows up in the J=psi K+ invariant mass distribution in the B+ -> J=psi phi K+ decay at the D*s over bar D* threshold. Such structure is results should stimulate further measurements around this region, given the fact that cusp effects provide as valuable information on hadron dynamics as resonances themselves.
Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan, Email: ikeno@tottori-u.ac.jp;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000743807000002 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5190
Permanent link to this record