|   | 
Details
   web
Records
Author Natochii, A. et al; Marinas, C.
Title Measured and projected beam backgrounds in the Belle II experiment at the SuperKEKB collider Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1055 Issue Pages 168550 - 21pp
Keywords Detector background; Lepton collider; Monte-Carlo simulation
Abstract The Belle II experiment at the SuperKEKB electron-positron collider aims to collect an unprecedented data set of 50 ab-1 to study CP-violation in the B-meson system and to search for Physics beyond the Standard Model. SuperKEKB is already the world's highest-luminosity collider. In order to collect the planned data set within approximately one decade, the target is to reach a peak luminosity of 6 x 1035 cm-2 s-1by further increasing the beam currents and reducing the beam size at the interaction point by squeezing the betatron function down to betay* = 0.3 mm. To ensure detector longevity and maintain good reconstruction performance, beam backgrounds must remain well controlled. We report on current background rates in Belle II and compare these against simulation. We find that a number of recent refinements have significantly improved the background simulation accuracy. Finally, we estimate the safety margins going forward. We predict that backgrounds should remain high but acceptable until a luminosity of at least 2.8 x 1035 cm-2 s-1is reached for betay* = 0.6 mm. At this point, the most vulnerable Belle II detectors, the Time-of-Propagation (TOP) particle identification system and the Central Drift Chamber (CDC), have predicted background hit rates from single-beam and luminosity backgrounds that add up to approximately half of the maximum acceptable rates.
Address [Natochii, A.; Browder, T. E.; Schueler, J.; Vahsen, S. E.] Univ Hawaii, Honolulu, HI 96822 USA, Email: natochii@hawaii.edu;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001056103200001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5626
Permanent link to this record
 

 
Author de los Rios, M.; Petac, M.; Zaldivar, B.; Bonaventura, N.R.; Calore, F.; Iocco, F.
Title Determining the dark matter distribution in simulated galaxies with deep learning Type Journal Article
Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 525 Issue 4 Pages 6015-6035
Keywords methods: data analysis; software: simulations; galaxies: general; galaxies: haloes; dark matter
Abstract We present a novel method of inferring the dark matter (DM) content and spatial distribution within galaxies, using convolutional neural networks (CNNs) trained within state-of-the-art hydrodynamical simulations (Illustris-TNG100). Within the controlled environment of the simulation, the framework we have developed is capable of inferring the DM mass distribution within galaxies of mass similar to 10(11)-10(13)M(circle dot) from the gravitationally baryon-dominated internal regions to the DM-rich, baryon-depleted outskirts of the galaxies, with a mean absolute error always below approximate to 0.25 when using photometrical and spectroscopic information. With respect to traditional methods, the one presented here also possesses the advantages of not relying on a pre-assigned shape for the DM distribution, to be applicable to galaxies not necessarily in isolation, and to perform very well even in the absence of spectroscopic observations.
Address [de los Rios, Martin] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil, Email: fabio.iocco.astro@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:001072112100006 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5707
Permanent link to this record
 

 
Author Baran, J. et al; Brzezinski, K.
Title Feasibility of the J-PET to monitor the range of therapeutic proton beams Type Journal Article
Year 2024 Publication Physica Medica Abbreviated Journal Phys. Medica
Volume 118 Issue Pages 103301 - 9pp
Keywords PET; Range monitoring; J-PET; Monte Carlo simulations; Proton radiotherapy
Abstract Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.
Address [Baran, Jakub; Silarski, Michal; Chug, Neha; Coussat, Aurelien; Czerwinski, Eryk; Dadgar, Meysam; Dulski, Kamil; Eliyan, Kavya, V; Gajos, Aleksander; Kacprzak, Krzysztof; Kaplon, Lukasz; Korcyl, Grzegorz; Kozik, Tomasz; Kumar, Deepak; Niedzwiecki, Szymon; Panek, Dominik; Parzych, Szymon; del Rio, Elena Perez; Simbarashe, Moyo; Sharma, Sushil; Shivani; Skurzok, Magdalena; Stepien, Ewa L.; Tayefi, Keyvan; Tayefi, Faranak; Moskal, Pawel] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, 11 Lojasiewicza St, PL-30348 Krakow, Poland, Email: jakubbaran92@gmail.com
Corporate Author Thesis
Publisher Elsevier Sci Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-1797 ISBN Medium
Area Expedition Conference
Notes WOS:001178648400001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5990
Permanent link to this record
 

 
Author n_TOF Collaboration (Alcayne, V. et al); Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Ladarescu, I.
Title A Segmented Total Energy Detector (sTED) optimized for (n,γ) cross-section measurements at n_TOF EAR2 Type Journal Article
Year 2024 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.
Volume 217 Issue Pages 11pp
Keywords Neutron capture; PHWT; Scintillation detectors; Monte Carlo simulation
Abstract The neutron time-of-flight facility nTOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at nTOF EAR2.
Address [Alcayne, V.; Cano-Ott, D.; Garcia, J.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A. Perez; Plaza, J.; Sanchez-Caballero, A.; Mendoza, E.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain, Email: victor.alcayne@ciemat.es
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-806x ISBN Medium
Area Expedition Conference
Notes WOS:001185584800001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5999
Permanent link to this record
 

 
Author Balaudo, A.; Calore, F.; De Romeri, V.; Donato, F.
Title NAJADS: a self-contained framework for the direct determination of astrophysical J-factors Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 001 - 33pp
Keywords dark matter simulations; dark matter theory; dark matter detectors
Abstract Cosmological simulations play a pivotal role in understanding the properties of the dark matter (DM) distribution in both galactic and galaxy -cluster environments. The characterization of DM structures is crucial for informing indirect DM searches, aiming at the detection of the annihilation (or decay) products of DM particles. A fundamental quantity in these analyses is the astrophysical J -factor. In the DM phenomenology community, J -factors are typically computed through the semi -analytical modelling of the DM mass distribution, which is affected by large uncertainties. With the scope of addressing and possibly reducing these uncertainties, we present NAJADS, a self-contained framework to derive the DM J -factor directly from the raw simulations data. We show how this framework can be used to compute all -sky maps of the J -factor, automatically accounting for the complex 3D structure of the simulated halos and for the boosting of the signal due to the density fluctuations along the line of sight. After validating our code, we present a proof -of -concept application of NAJADS to a realistic halo from the IllustrisTNG suite, and exploit it to make a thorough comparison between our numerical approach and traditional semi -analytical methods. JCAP02(2024)001
Address [Balaudo, Anna] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands, Email: balaudo@strw.leidenuniv.nl;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001182021200006 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 6018
Permanent link to this record