toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wurm, M. et al; Mena, O. url  doi
openurl 
  Title The next-generation liquid-scintillator neutrino observatory LENA Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 35 Issue 11 Pages 685-732  
  Keywords Neutrino detectors; Liquid-scintillator detectors; Low-energy neutrinos; Proton decay; Longbaseline neutrino beams  
  Abstract As part of the European LAGUNA design study on a next-generation neutrino detector, we propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a multipurpose neutrino observatory. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. Low energy threshold, good energy resolution and efficient background discrimination are inherent to the liquid-scintillator technique. A target mass of 50 kt will offer a substantial increase in detection sensitivity. At low energies, the variety of detection channels available in liquid scintillator will allow for an energy and flavor-resolved analysis of the neutrino burst emitted by a galactic Supernova. Due to target mass and background conditions, LENA will also be sensitive to the faint signal of the Diffuse Supernova Neutrino Background. Solar metallicity, time-variation in the solar neutrino flux and deviations from MSW-LMA survival probabilities can be investigated based on unprecedented statistics. Low background conditions allow to search for dark matter by observing rare annihilation neutrinos. The large number of events expected for geoneutrinos will give valuable information on the abundances of Uranium and Thorium and their relative ratio in the Earth's crust and mantle. Reactor neutrinos enable a high-precision measurement of solar mixing parameters. A strong radioactive or pion decay-at-rest neutrino source can be placed close to the detector to investigate neutrino oscillations for short distances and sub-MeV to MeV energies. At high energies, LENA will provide a new lifetime limit for the SUSY-favored proton decay mode into kaon and antineutrino, surpassing current experimental limits by about one order of magnitude. Recent studies have demonstrated that a reconstruction of momentum and energy of GeV particles is well feasible in liquid scintillator. Monte Carlo studies on the reconstruction of the complex event topologies found for neutrino interactions at multi-GeV energies have shown promising results. If this is confirmed. LENA might serve as far detector in a long-baseline neutrino oscillation experiment currently investigated in LAGUNA-LBNO.  
  Address [Wurm, Michael; Bick, Daniel; Hagner, Caren; Lorenz, Sebastian] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: michael.wurm@desy.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000304787800001 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 1054  
Permanent link to this record
 

 
Author Studen, A.; Chesi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Linhart, V.; Mikuz, M.; Stankova, V.; Weilhammer, P.; Zontar, D. doi  openurl
  Title A silicon PET probe Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 648 Issue Pages S255-S258  
  Keywords PET; Silicon detectors  
  Abstract PET scanners with high spatial resolution offer a great potential in improving diagnosis, therapy monitoring and treatment validation for several severe diseases. One way to improve resolution of a PET scanner is to extend a conventional PET ring with a small probe with excellent spatial resolution. The probe is intended to be placed close to the area of interest. The coincidences of interactions within the probe and the external ring provide a subset of data which combined with data from external ring, greatly improve resolution in the area viewed by the probe. Our collaboration is developing a prototype of a PET probe, composed of high-resolution silicon pad detectors. The detectors are 1 mm thick, measuring 40 by 26 mm(2), and several such sensors are envisaged to either compensate for low stopping power of silicon or increase the area covered by the probe. The sensors are segmented into 1 mm(3) cubic voxels, giving 1040 readout pads per sensor. A module is composed of two sensors placed in a back-to-back configuration, allowing for stacking fraction of up to 70% within a module. The pads are coupled to a set of 16 ASICs (VaTaGP7.1 by IDEAS) per module and read out through a custom designed data acquisition board, allowing for trigger and data interfacing with the external ring. This paper presents an overview of probe requirements and expected performance parameters. It will focus on the characteristics of the silicon modules and their impact on overall probe performance, including spatial resolution, energy resolution and timing resolution. We will show that 1 mm(3) voxels will significantly extend the spatial resolution of conventional PET rings, and that broadening of timing resolution related to varying depth of photon interactions can be compensated to match the timing resolution of the external ring. The initial test results of the probe will also be presented.  
  Address [Studen, A.; Cindro, V.; Grosicar, B.; Mikuz, M.; Zontar, D.] Jozef Stefan Inst, Ljubljana, Slovenia, Email: andrej.studen@ijs.si  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900063 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 1070  
Permanent link to this record
 

 
Author AGATA Collaboration; Doncel, M.; Quintana, B.; Gadea, A.; Recchia, F.; Farnea, E. doi  openurl
  Title Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 648 Issue Pages S131-S134  
  Keywords gamma-Spectroscopy; Gamma tracking; Imaging; Position-sensitive germanium detectors  
  Abstract In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the gamma-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1 pi solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between gamma sources placed at different locations.  
  Address [Doncel, M.; Quintana, B.] Univ Salamanca, Lab Radiac Ionizantes, E-37008 Salamanca, Spain, Email: doncel@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900035 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 1071  
Permanent link to this record
 

 
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D. doi  openurl
  Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages C05012 - 12pp  
  Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)  
  Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.  
  Address [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305419700013 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 1084  
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title NEXT-100 Technical Design Report (TDR). Executive summary Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages T06001 - 34pp  
  Keywords Detector design and construction technologies and materials; Time projection chambers  
  Abstract In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (beta beta 0v) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 x 8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.  
  Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot, M.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306072000030 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 1097  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva