toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Roser, J.; Muñoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J.F. doi  openurl
  Title Image reconstruction for a multi-layer Compton telescope: an analytical model for three interaction events Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 14 Pages 145005 - 17pp  
  Keywords Compton camera; Compton imaging; hadron therapy; image reconstruction; lm-mlem; monte carlo simulations; multi-layer Compton telescope  
  Abstract Compton Cameras are electronically collimated photon imagers suitable for sub-MeV to few MeV gamma-ray detection. Such features are desirable to enablein vivorange verification in hadron therapy, through the detection of secondary Prompt Gammas. A major concern with this technique is the poor image quality obtained when the incoming gamma-ray energy is unknown. Compton Cameras with more than two detector planes (multi-layer Compton Cameras) have been proposed as a solution, given that these devices incorporate more signal sequences of interactions to the conventional two interaction events. In particular, three interaction events convey more spectral information as they allow inferring directly the incident gamma-ray energy. A three-layer Compton Telescope based on continuous Lanthanum (III) Bromide crystals coupled to Silicon Photomultipliers is being developed at the IRIS group of IFIC-Valencia. In a previous work we proposed a spectral reconstruction algorithm for two interaction events based on an analytical model for the formation of the signal. To fully exploit the capabilities of our prototype, we present here an extension of the model for three interaction events. Analytical expressions of the sensitivity and the System Matrix are derived and validated against Monte Carlo simulations. Implemented in a List Mode Maximum Likelihood Expectation Maximization algorithm, the proposed model allows us to obtain four-dimensional (energy and position) images by using exclusively three interaction events. We are able to recover the correct spectrum and spatial distribution of gamma-ray sources when ideal data are employed. However, the uncertainties associated to experimental measurements result in a degradation when real data from complex structures are employed. Incorrect estimation of the incident gamma-ray interaction positions, and missing deposited energy associated with escaping secondaries, have been identified as the causes of such degradation by means of a detailed Monte Carlo study. As expected, our current experimental resolution and efficiency to three interaction events prevents us from correctly recovering complex structures of radioactive sources. However, given the better spectral information conveyed by three interaction events, we expect an improvement of the image quality of conventional Compton imaging when including such events. In this regard, future development includes the incorporation of the model assessed in this work to the two interaction events model in order to allow using simultaneously two and three interaction events in the image reconstruction.  
  Address [Roser, J.; Munoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J. F.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: Jorge.Roser@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000552701600001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4481  
Permanent link to this record
 

 
Author Barenboim, G.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title CPT and CP, an entangled couple Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 155 - 12pp  
  Keywords CP violation; Neutrino Physics; Beyond Standard Model  
  Abstract Even though it is undoubtedly very appealing to interpret the latest T2K results as evidence of CP violation, this claim assumes CPT conservation in the neutrino sector to an extent that has not been tested yet. As we will show, T2K results are not robust against a CPT-violating explanation. On the contrary, a CPT-violating CP-conserving scenario is in perfect agreement with current neutrino oscillation data. Therefore, to elucidate whether T2K results imply CP or CPT violation is of utter importance. We show that, even after combining with data from NO nu A and from reactor experiments, no claims about CP violation can be made. Finally, we update the bounds on CPT violation in the neutrino sector.  
  Address [Barenboim, Gabriela; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555932400005 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4492  
Permanent link to this record
 

 
Author Pich, A.; Rosell, I.; Sanz-Cillero, J.J. url  doi
openurl 
  Title Bottom-up approach within the electroweak effective theory: Constraining heavy resonances Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 3 Pages 035012 - 12pp  
  Keywords  
  Abstract The LHC has confirmed the existence of a mass gap between the known particles and possible new states. Effective field theory is then the appropriate tool to search for low-energy signals of physics beyond the Standard Model. We adopt the general formalism of the electroweak effective theory, with a nonlinear realization of the electroweak symmetry breaking, where the Higgs is a singlet with independent couplings. At higher energies we consider a generic resonance Lagrangian which follows the above-mentioned nonlinear realization and couples the light particles to bosonic heavy resonances with J(P) = 0(+/-) and J(P) = 1(+/-). Integrating out the resonances and assuming a proper short-distance behavior, it is possible to determine or to constrain most of the bosonic low-energy constants in terms of resonance masses. Therefore, the current experimental bounds on these bosonic low-energy constants allow us to constrain the resonance masses above the TeV scale, by following a typical bottom-up approach, i.e., the fit of the low-energy constants to precise experimental data enables us to learn about the high-energy scales, the underlying theory behind the Standard Model.  
  Address [Pich, Antonio] Univ Valencia, CSIC, IFIC, Apt Correus 22085, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000557730600006 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4497  
Permanent link to this record
 

 
Author Delhom, A. url  doi
openurl 
  Title Minimal coupling in presence of non-metricity and torsion Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 8 Pages 728 - 17pp  
  Keywords  
  Abstract We deal with the question of what it means to define a minimal coupling prescription in presence of torsion and/or non-metricity, carefully explaining while the naive substitution partial derivative -> del introduces extra couplings between the matter fields and the connection that can be regarded as non-minimal in presence of torsion and/or non-metricity. We will also investigate whether minimal coupling prescriptions at the level of the action (MCPL) or at the level of field equations (MCPF) lead to different dynamics. To that end, we will first write the Euler-Lagrange equations for matter fields in terms of the covariant derivatives of a general non-Riemannian space, and derivate the form of the associated Noether currents and charges. Then we will see that if the minimal coupling prescriptions is applied as we discuss, for spin 0 and 1 fields the results of MCPL and MCPF are equivalent, while for spin 1/2 fields there is a difference if one applies the MCPF or the MCPL, since the former leads to charge violation.  
  Address [Delhom, Adria] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: adria.delhom@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561952300005 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4510  
Permanent link to this record
 

 
Author Ferreiro, A.; Navarro-Salas, J. url  doi
openurl 
  Title Running gravitational couplings, decoupling, and curved spacetime renormalization Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 4 Pages 045021 - 6pp  
  Keywords  
  Abstract We propose to slightly generalize the DeWitt-Schwinger adiabatic renormalization subtractions in curved space to include an arbitrary renornialization mass scale mu. The new predicted running for the gravitational couplings are fully consistent with decoupling of heavy massive fields. This is a somewhat improvement with respect to the more standard treatment of minimal (DeWitt-Schwinger) subtractions via dimensional regularization. We also show how the vacuum metamorphosis model emerges from the running couplings.  
  Address [Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Fac Fis, CSIC, Ctr Mixto Univ Valencia,Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000563711800009 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4517  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva