toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ferrando Solera, S.; Pich, A.; Vale Silva, L. url  doi
openurl 
  Title Direct bounds on Left-Right gauge boson masses at LHC Run 2 Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 027 - 39pp  
  Keywords Left-Right Models; Grand Unification; New Gauge Interactions  
  Abstract While the third run of the Large Hadron Collider (LHC) is ongoing, the underlying theory that extends the Standard Model remains so far unknown. Left-Right Models (LRMs) introduce a new gauge sector, and can restore parity symmetry at high enough energies. If LRMs are indeed realized in nature, the mediators of the new weak force can be searched for in colliders via their direct production. We recast existing experimental limits from the LHC Run 2 and derive generic bounds on the masses of the heavy LRM gauge bosons. As a novelty, we discuss the dependence of the WR and ZR total width on the LRM scalar content, obtaining model-independent bounds within the specific realizations of the LRM scalar sectors analysed here. These bounds avoid the need to detail the spectrum of the scalar sector, and apply in the general case where no discrete symmetry is enforced. Moreover, we emphasize the impact on the WR production at LHC of general textures of the right-handed quark mixing matrix without manifest left-right symmetry. We find that the WR and ZR masses are constrained to lie above 2 TeV and 4 TeV, respectively.  
  Address [Solera, Sergio Ferrando; Pich, Antonio; Silva, Luiz Vale] Univ Valencia, Consejo Super Invest Cient, Dept Fis Teor, Inst Fis Corpuscular, Parc Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: Sergio.Ferrando@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001156665600003 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5928  
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A.; Roldan, E. url  doi
openurl 
  Title Bright and dark solitons in a photonic nonlinear quantum walk: lessons from the continuum Type Journal Article
  Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 26 Issue 2 Pages 023004 - 16pp  
  Keywords quantum walks; soliton; non-linear optics  
  Abstract We propose a nonlinear quantum walk model inspired in a photonic implementation in which the polarization state of the light field plays the role of the coin-qubit. In particular, we take profit of the nonlinear polarization rotation occurring in optical media with Kerr nonlinearity, which allows to implement a nonlinear coin operator, one that depends on the state of the coin-qubit. We consider the space-time continuum limit of the evolution equation, which takes the form of a nonlinear Dirac equation. The analysis of this continuum limit allows us to gain some insight into the existence of different solitonic structures, such as bright and dark solitons. We illustrate several properties of these solitons with numerical calculations, including the effect on them of an additional phase simulating an external electric field.  
  Address [Angles-Castillo, Andreu; Perez, Armando] Univ Valencia, Dept Fis Teor & IFIC, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.angles-castillo@uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001156767400001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5929  
Permanent link to this record
 

 
Author Coloma, P.; López-Pavón, J.; Molina-Bueno, L.; Urrea, S. url  doi
openurl 
  Title New physics searches using ProtoDUNE and the CERN SPS accelerator Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 134 - 18pp  
  Keywords New Light Particles; Sterile or Heavy Neutrinos  
  Abstract The exquisite capabilities of liquid Argon Time Projection Chambers make them ideal to search for weakly interacting particles in Beyond the Standard Model scenarios. Given their location at CERN the ProtoDUNE detectors may be exposed to a flux of such particles, produced in the collisions of 400 GeV protons (extracted from the Super Proton Synchrotron accelerator) on a target. Here we point out the interesting possibilities that such a setup offers to search for both long-lived unstable particles (Heavy Neutral Leptons, axion-like particles, etc) and stable particles (e.g. light dark matter, or millicharged particles). Our results show that, under conservative assumptions regarding the expected luminosity, this setup has the potential to improve over present bounds for some of the scenarios considered. This could be done within a short timescale, using facilities that are already in place at CERN, and without interfering with the experimental program in the North Area at CERN.  
  Address [Coloma, Pilar] UAM, Inst Fis Teor, CSIC, Calle Nicolas Cabrera 13-15, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001155849200017 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5948  
Permanent link to this record
 

 
Author Lerendegui-Marco, J.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Calvo, D.; Ladarescu, I.; Domingo-Pardo, C. url  doi
openurl 
  Title Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections Type Journal Article
  Year 2024 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.  
  Volume 11 Issue 1 Pages 2 - 17pp  
  Keywords Gamma imaging; Neutron imaging; Nuclear inspections; Homeland security; Nuclear waste characterization  
  Abstract This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.  
  Address [Lerendegui-Marco, Jorge; Babiano-Suarez, Victor; Balibrea-Correa, Javier; Caballero, Luis; Calvo, David; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-7045 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001171512700001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5975  
Permanent link to this record
 

 
Author Navarro-Salas, J. url  doi
openurl 
  Title Black holes, conformal symmetry, and fundamental fields Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 8 Pages 085003 - 14pp  
  Keywords black holes; horizons; singularities; conformal symmetry; quantum fields; Standard Model  
  Abstract Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.  
  Address [Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: jnavarro@ific.uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001187435100001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 6029  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva