toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aranda, A.; Bonilla, C.; Morisi, S.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Dirac neutrinos from flavor symmetry Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 3 Pages 033001 - 5pp  
  Keywords  
  Abstract We present a model where Majorana neutrino mass terms are forbidden by the flavor symmetry group Delta(27). Neutrinos are Dirac fermions and their masses arise in the same way as those of the charged fermions, due to very small Yukawa couplings. The model fits current neutrino oscillation data and correlates the octant of the atmospheric angle theta(23) with the magnitude of the lightest neutrino mass, with maximal mixing excluded for any neutrino mass hierarchy.  
  Address [Aranda, Alfredo] Univ Colima, Fac Ciencias CUICBAS, Colima 28045, Mexico, Email: fefo@ucol.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331878400001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1702  
Permanent link to this record
 

 
Author Arbelaez, C.; Romao, J.C.; Hirsch, M.; Malinsky, M. url  doi
openurl 
  Title LHC-scale left-right symmetry and unification Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 3 Pages 035002 - 19pp  
  Keywords  
  Abstract We construct a comprehensive list of nonsupersymmetric standard model extensions with a low-scale left-right (LR)-symmetric intermediate stage that may be obtained as simple low-energy effective theories within a class of renormalizable SO(10) grand unified theories. Unlike the traditional “minimal” LR models many of our example settings support a perfect gauge coupling unification even if the LR scale is in the LHC domain at a price of only (a few copies of) one or two types of extra fields pulled down to the TeV-scale ballpark. We discuss the main aspects of a potentially realistic model building conforming the basic constraints from the quark and lepton sector flavor structure, proton decay limits, etc. We pay special attention to the theoretical uncertainties related to the limited information about the underlying unified framework in the bottom-up approach, in particular, to their role in the possible extraction of the LR-breaking scale. We observe a general tendency for the models without new colored states in the TeV domain to be on the verge of incompatibility with the proton stability constraints.  
  Address [Arbelaez, Carolina; Romao, Jorge C.] Univ Lisbon, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: carolina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331878400006 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1703  
Permanent link to this record
 

 
Author Granero, D.; Perez-Calatayud, J.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations Type Journal Article
  Year 2014 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 41 Issue 2 Pages 021703 - 8pp  
  Keywords HDR; brachytherapy; skin; Monte Carlo; Geant4; Co-60; Ir-192; Yb-169  
  Abstract Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm x 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR Co-60 and Ir-192 sources and a hypothetical Yb-169 source were considered. The Geant4Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm x 5 cm Ir-192 superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about -3%. When the source was positioned at the skin surface, dose differences were smaller than -1% for Co-60 and Ir-192, yet -3% for Yb-169. For the interstitial implant, dose differences at the skin surface were -7% for Co-60, -0.6% for Ir-192, and -2.5% for Yb-169. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either Co-60 and Ir-192. For lower energy radionuclides like Yb-169, bolus may be needed; and (iii) for the interstitial case, at least a 0.1 cm bolus is advised for Co-60 to avoid underdosing superficial target layers. For Ir-192 and Yb-169, no bolus is needed. For those cases where no bolus is needed, its use might be detrimental as the lack of radiation scatter may be beneficial to the patient, although the 2% tolerance for dose calculation accuracy recommended in the AAPM TG-56 report is not fulfilled.  
  Address [Granero, Domingo] Hosp Gen Univ, ERESA, Dept Radiat Phys, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331213300006 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1704  
Permanent link to this record
 

 
Author Xie, J.J.; Albaladejo, M.; Oset, E. url  doi
openurl 
  Title Signature of an h(1) state in the J/psi -> eta h(1) -> eta K*(0)(K)over-bar*(0) decay Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 728 Issue Pages 319-322  
  Keywords  
  Abstract The BES data on the J/psi -> eta K*(0)(K) over bar*(0) reaction show a clear enhancement in the K*(0)(K) over bar*(0) mass distribution close to the threshold of this channel. Such an enhancement is usually a signature of an L = 0 resonance around threshold, which in this case would correspond to an h1 state with quantum numbers I-G(J(Pc))= 0(-)(1(+-)). A state around 1800 MeV results from the interaction of the K*TC* using the local hidden gauge approach. We show that the peak observed in J/psi -> eta K*(0)(K) over bar*(0) naturally comes from the creation of this h(1) state with mass and width around 1830 MeV and 110 MeV, respectively. A second analysis, model independent, corroborates the first result, confirming the relationship of the enhancement in the invariant mass spectrum with the h(1) resonance.  
  Address [Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China, Email: albaladejo@ipno.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000330556000052 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1706  
Permanent link to this record
 

 
Author Mantovani Sarti, V.; Vento, V. url  doi
openurl 
  Title The half-skyrmion phase in a chiral-quark model Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 728 Issue Pages 323-327  
  Keywords  
  Abstract The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner-Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B = 1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD.  
  Address [Sarti, Valentina Mantovani] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000330556000053 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1707  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva