Gonzalez, P., Mathieu, V., & Vento, V. (2011). Heavy meson interquark potential. Phys. Rev. D, 84(11), 114008–7pp.
Abstract: The resolution of Dyson-Schwinger equations leads to the freezing of the QCD running coupling (effective charge) in the infrared, which is best understood as a dynamical generation of a gluon mass function, giving rise to a momentum dependence which is free from infrared divergences. We calculate the interquark static potential for heavy mesons by assuming that it is given by a massive One Gluon Exchange interaction and compare with phenomenologyical fits inspired by lattice QCD. We apply these potential forms to the description of quarkonia and conclude that, even though some aspects of the confinement mechanism are absent in the Dyson-Schwinger formalism, the spectrum can be reasonably reproduced. We discuss possible explanations for this outcome.
|
Noguera, S., & Vento, V. (2012). Model analysis of the world data on the pion transition form factor. Eur. Phys. J. A, 48(10), 143–4pp.
Abstract: We discuss the impact of recent Belle data on our description of the pion transition form factor based on the assumption that a perturbative formalism and a nonperturbative one can be matched in a physically acceptable manner at a certain hadronic scale Q(0). We discuss the implications of the different parameters of the model in comparing with world data and conclude that within experimental errors our description remains valid. Thus we can assert that the low Q(2) nonperturbative description together with an additional 1/Q(2) term at the matching scale have a strong influence on the Q(2) behavior up to very high values of Q(2).
|
Vento, V. (2013). Confinement, the gluon propagator and the interquark potential for heavy mesons. Eur. Phys. J. A, 49(6), 71–7pp.
Abstract: The interquark static potential for heavy mesons described by a massive one-gluon exchange interaction obtained from the propagator of the truncated Dyson-Schwinger equations does not reproduced the expected Cornell potential. I show that no formulation based on a finite propagator will lead to confinement of quenched QCD. I propose a mechanism based on a singular nonperturbative coupling constant which has the virtue of giving rise to a finite gluon propagator and (almost) linear confinement. The mechanism can be slightly modified to produce the screened potentials of unquenched QCD.
|
Vento, V. (2016). Glueball-meson mixing. Eur. Phys. J. A, 52(1), 1–5pp.
Abstract: Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous results of Gluodynamics finding a glueball at similar to 1750 MeV. I analyze the implications of this discovery from the point of view of glueball-meson mixing in light of the experimental scalar sprectrum.
|
Ayala, C., Gonzalez, P., & Vento, V. (2016). Heavy quark potential from QCD-related effective coupling. J. Phys. G, 43(12), 125002–12pp.
Abstract: We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.
|