|   | 
Details
   web
Records
Author Herrero, V.; Toledo, J.; Catala, J.M.; Esteve, R.; Gil, A.; Lorca, D.; Monzo, J.M.; Sanchis, F.; Verdugo, A.
Title Readout electronics for the SiPM tracking plane in the NEXT-1 prototype Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 695 Issue Pages 229-232
Keywords Neutrino less double beta decay; Xenon gas TPC; SiPM readout; Front-end electronics; Gated integrator
Abstract NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.
Address [Herrero, V.; Toledo, J.; Catala, J. M.; Esteve, R.; Monzo, J. M.; Sanchis, F.] Univ Politecn Valencia, CIEMAT, Ctr Mixto, I3M, Valencia 46022, Spain, Email: jtoledo@eln.upv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311469900049 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 1237
Permanent link to this record
 

 
Author Gil, A.; Diaz, J.; Gomez-Cadenas, J.J.; Herrero, V.; Rodriguez, J.; Serra, L.; Toledo, J.; Esteve, R.; Monzo, J.M.; Monrabal, F.; Yahlali, N.
Title Front-end electronics for accurate energy measurement of double beta decays Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 695 Issue Pages 407-409
Keywords Front-end electronics; Xenon gas TPC; Energy measurement; Electroluminiscence; Double-beta decay
Abstract NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-beta decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.
Address [Gil, A.; Diaz, J.; Gomez-Cadenas, J. J.; Rodriguez, J.; Serra, L.; Monrabal, F.; Yahlali, N.] Inst Fis Corpuscular CSIC UV, Valencia 46071, Spain, Email: alejandro.gil@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311469900092 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 1238
Permanent link to this record
 

 
Author Agarwalla, S.K.; Hernandez, P.
Title Probing the neutrino mass hierarchy with Super-Kamiokande Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 086 - 14pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We show that for recently discovered large values of theta(13), a superbeam with an average neutrino energy of similar to 5 GeV, such as those being proposed at CERN, if pointing to Super-Kamiokande (L similar or equal to 8770 km), could reveal the neutrino mass hierarchy at 5 sigma in less than two years irrespective of the true hierarchy and CP phase. The measurement relies on the near resonant matter effect in the nu(mu) -> nu(e) oscillation channel, and can be done counting the total number of appearance events with just a neutrino beam.
Address [Agarwalla, Sanjib Kumar; Hernandez, Pilar] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000310851600047 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 1251
Permanent link to this record
 

 
Author Esteve, R.; Toledo, J.; Monrabal, F.; Lorca, D.; Serra, L.; Mari, A.; Gomez-Cadenas, J.J.; Liubarsky, I.; Mora, F.
Title The trigger system in the NEXT-DEMO detector Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages C12001 - 9pp
Keywords Data acquisition circuits; Trigger algorithms; Trigger concepts and systems (hardware and software); Modular electronics
Abstract NEXT-DEMO is a prototype of NEXT (Neutrino Experiment with Xenon TPC), an experiment to search for neutrino-less double beta decay using a 100 kg radio-pure, 90 % enriched (136Xe isotope) high-pressure gaseous xenon TPC with electroluminescence readout. The detector is based on a PMT plane for energy measurements and a SiPM tracking plane for topological event filtering. The experiment will be located in the Canfranc Underground Laboratory in Spain. Front-end electronics, trigger and data-acquisition systems (DAQ) have been built. The DAQ is an implementation of the Scalable Readout System (RD51 collaboration) based on FPGA. Our approach for trigger is to have a distributed and reconfigurable system in the DAQ itself. Moreover, the trigger allows on-line triggering based on the detection of primary or secondary scintillation light, or a combination of both, that arrives to the PMT plane.
Address [Esteve, R.; Toledo, J.; Mari, A.; Mora, F.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Valencia 46022, Spain, Email: rauesbos@eln.upv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000312962500001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 1288
Permanent link to this record
 

 
Author De Romeri, V.; Hirsch, M.
Title Sneutrino dark matter in low-scale seesaw scenarios Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 106 - 28pp
Keywords Supersymmetry Phenomenology
Abstract We consider supersymmetric models in which sneutrinos are viable dark matter candidates. These are either simple extensions of the Minimal Supersymmetric Standard Model with additional singlet superfields, such as the inverse or linear seesaw, or a model with an additional U(1) group. All of these models can accomodate the observed small neutrino masses and large mixings. We investigate the properties of sneutrinos as dark matter candidates in these scenarios. We check for phenomenological bounds, such as correct relic abundance, consistency with direct detection cross section limits and laboratory constraints, among others lepton flavour violating (LFV) charged lepton decays. While inverse and linear seesaw lead to different results for LFV, both models have very similar dark matter phenomenology, consistent with all experimental bounds. The extended gauge model shows some additional and peculiar features due to the presence of an extra gauge boson Z' and an additional light Higgs. Specifically, we point out that for sneutrino LSPs there is a strong constraint on the mass of the Z' due to the experimental bounds on the direct detection scattering cross section.
Address [De Romeri, Valentina; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, CSIC, AHEP Grp, E-46071 Valencia, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000313124000041 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 1318
Permanent link to this record