|   | 
Details
   web
Records
Author Edelhauser, L.; Porod, W.; Singh, R.K.
Title Spin discrimination in three-body decays Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 053 - 31pp
Keywords Beyond Standard Model; Supersymmetric Standard Model
Abstract The identification of the correct model for physics beyond the Standard Model requires the determination of the spin of new particles. We investigate to which extent the spin of a new particle X can be identified in scenarios where it decays dominantly in three-body decays X -> f (f) over barY. Here we assume that Y is a candidate for dark matter and escapes direct detection at a high energy collider such as the LHC. We show that in the case that all intermediate particles are heavy, one can get information on the spins of X and Y at the LHC by exploiting the invariant mass distribution of the two standard model fermions. We develop a model-independent strategy to determine the spins without prior knowledge of the unknown couplings and test it in a series of Monte Carlo studies.
Address [Edelhaeuser, Lisa; Porod, Werner; Singh, Ritesh K.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ledelhaeuser@physik.uni-wuerzburg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000282368500014 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ elepoucu @ Serial 355
Permanent link to this record
 

 
Author Chang, Q.; Li, X.Q.; Yang, Y.D.
Title The effects of a family nonuniversal Z ' boson on B -> pi pi decays Type Journal Article
Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 26 Issue 7-8 Pages 1273-1294
Keywords B-physics; rare decays; beyond Standard Model
Abstract Motivated by the measured large branching ratio of (B) over bar (0) --> pi(0)pi(0) (the so-called pi pi puzzle), we investigate the effects of a family nonuniversal Z' model on the tree-dominated B --> pi pi decays. We find that the Z' coupling parameter zeta(LR)(d) similar to 0.05 with a nontrivial new weak phase phi(L)(d) similar to -50 degrees, which is relevant to the Z' contributions to the QCD penguin sector Delta C-5, is needed to reconcile the observed discrepancy. Combined with the recent fitting results from B --> pi K, pi K* and rho K decays, the Z' parameter spaces are severely reduced but still not excluded entirely, implying that both the “pi pi” and “pi K” puzzles could be accommodated simultaneously within such a family nonuniversal Z' model.
Address [Chang, Qin; Li, Xin-Qiang] Henan Normal Univ, Dept Phys, Xinxiang 453007, Henan, Peoples R China, Email: changqin@htu.cn
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes ISI:000289175800004 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 595
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Pena-Garay, C.
Title Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 066 - 28pp
Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries
Abstract We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production phi(0)(e) : phi(0)(mu) : phi(0)(tau) = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, phi(mu), and for the flavour ratios at Earth, R = phi(mu)/phi(e) and S = phi(tau)/phi(mu). CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of phi(mu), R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10(-29) – 10(-27) GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.
Address [Bustamante, M.; Gago, A. M.] Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru, Email: mbustamante@pucp.edu.pe
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000277473100004 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ elepoucu @ Serial 455
Permanent link to this record
 

 
Author Blennow, M.; Dasgupta, B.; Fernandez-Martinez, E.; Rius, N.
Title Aidnogenesis via leptogenesis and dark sphalerons Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 014 - 14pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics
Abstract We discuss aidnogenesis,(1) i.e. the generation of a dark matter asymmetry, via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form “dark baryons” through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be similar to 6GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.
Address [Blennow, Mattias; Fernandez-Martinez, Enrique] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: blennow@mppmu.mpg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295200014 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 611
Permanent link to this record
 

 
Author Hirsch, M.; Kernreiter, T.; Romao, J.C.; del Moral, A.V.
Title Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 103 - 21pp
Keywords Rare Decays; Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model
Abstract We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as μ-> e gamma and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.
Address [Hirsch, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000273959700030 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ elepoucu @ Serial 509
Permanent link to this record