|   | 
Details
   web
Records
Author Domingo-Pardo, C.
Title A new technique for 3D gamma-ray imaging: Conceptual study of a 3D camera Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 675 Issue Pages 123-132
Keywords Gamma-ray detector; Three dimensional gamma-ray imaging; Compton camera; Gamma camera
Abstract A novel technique for 3D gamma-ray imaging is presented. This method combines the positron annihilation Compton scattering imaging technique with a supplementary position sensitive detector, which registers gamma-rays scattered in the object at angles of about 90 degrees. The 3D coordinates of the scattering location can be determined rather accurately by applying the Compton principle. This method requires access to the object from two orthogonal sides and allows one to achieve a position resolution of few mm in all three space coordinates. A feasibility study for a 3D camera is presented based on Monte Carlo calculations.
Address Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000302973600019 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 989
Permanent link to this record
 

 
Author Magan, D.L.P.; Caballero, L.; Domingo-Pardo, C.; Agramunt-Ros, J.; Albiol, F.; Casanovas, A.; Gonzalez, A.; Guerrero, C.; Lerendegui-Marco, J.; Tarifeño-Saldivia, A.
Title First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 823 Issue Pages 107-119
Keywords Neutron capture cross-sections; gamma-ray imaging; Total energy detectors; Pulse-height weighting technique; Time-of-flight method
Abstract In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.
Address [Perez Magan, D. L.; Caballero, L.; Domingo-Pardo, C.; Agramunt-Ros, J.; Albiol, F.; Tarifeno-Saldivia, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000374661600015 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 2665
Permanent link to this record
 

 
Author Babiano, V.; Caballero, L.; Calvo, D.; Ladarescu, I.; Olleros, P.; Domingo-Pardo, C.
Title gamma-Ray position reconstruction in large monolithic LaCl3(Ce) crystals with SiPM readout Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 931 Issue Pages 1-22
Keywords Gamma-ray; Position-sensitive detectors; Monolithic crystals; Spatial resolution; Neural networks
Abstract We report on the spatial response characterization of large LaCl3(Ce) monolithic crystals optically coupled to 8 x 8 pixel silicon photomultiplier (SiPM) sensors. A systematic study has been carried out for 511 keV gamma-rays using three different crystal thicknesses of 10 mm, 20 mm and 30 mm, all of them with planar geometry and a base size of 50 x 50 mm(2). In this work we investigate and compare two different approaches for the determination of the main gamma-ray hit location. On one hand, methods based on the fit of an analytical model for the scintillation light distribution provide the best results in terms of linearity and field of view, with spatial resolutions close to similar to 1 mm FWHM. On the other hand, position reconstruction techniques based on neural networks provide similar linearity and field-of-view, becoming the attainable spatial resolution similar to 3 mm FWHM. For the third space coordinate z or depth-of-interaction we have implemented an inverse linear calibration approach based on the cross-section of the measured scintillation-light distribution at a certain height. The detectors characterized in this work are intended for the development of so-called Total Energy Detectors with Compton imaging capability (i-TED), aimed at enhanced sensitivity and selectivity measurements of neutron capture cross sections via the time-of-flight (TOF) technique.
Address [Babiano, V; Caballero, L.; Calvo, D.; Ladarescu, I; Olleros, P.; Domingo-Pardo, C.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000466151600001 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 4015
Permanent link to this record
 

 
Author Balibrea-Correa, J.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Caballero, L.; Calvo, D.; Ladarescu, I.; Olleros-Rodriguez, P.; Domingo-Pardo, C.
Title Machine Learning aided 3D-position reconstruction in large LaCl3 crystals Type Journal Article
Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1001 Issue Pages 165249 - 17pp
Keywords Gamma-ray; Position sensitive detectors; Monolithic crystals; Compton imaging; Machine Learning; Convolutional Neural Networks; Total Energy Detector; Neutron capture cross-section
Abstract We investigate five different models to reconstruct the 3D gamma-ray hit coordinates in five large LaCl3(Ce) monolithic crystals optically coupled to pixelated silicon photomultipliers. These scintillators have a base surface of 50 x 50 mm(2) and five different thicknesses, from 10 mm to 30 mm. Four of these models are analytical prescriptions and one is based on a Convolutional Neural Network. Average resolutions close to 1-2 mm fwhm are obtained in the transverse crystal plane for crystal thicknesses between 10 mm and 20 mm using analytical models. For thicker crystals average resolutions of about 3-5 mm fwhm are obtained. Depth of interaction resolutions between 1 mm and 4 mm are achieved depending on the distance of the interaction point to the photosensor surface. We propose a Machine Learning algorithm to correct for linearity distortions and pin-cushion effects. The latter allows one to keep a large field of view of about 70%-80% of the crystal surface, regardless of crystal thickness. This work is aimed at optimizing the performance of the so-called Total Energy Detector with Compton imaging capability (i-TED) for time-of-flight neutron capture cross-section measurements.
Address [Balibrea-Correa, J.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Caballero, L.; Calvo, D.; Ladarescu, I.; Olleros-Rodriguez, P.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: javier.balibrea@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000641308300007 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 4803
Permanent link to this record
 

 
Author Gammaldi, V.; Zaldivar, B.; Sanchez-Conde, M.A.; Coronado-Blazquez, J.
Title A search for dark matter among Fermi-LAT unidentified sources with systematic features in machine learning Type Journal Article
Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 520 Issue 1 Pages 1348-1361
Keywords astroparticle physics – methods; data analysis – methods; observational – methods; statistical – dark matter – gamma-rays; general
Abstract Around one-third of the point-like sources in the Fermi-LAT catalogues remain as unidentified sources (unIDs) today. Indeed, these unIDs lack a clear, univocal association with a known astrophysical source. If dark matter (DM) is composed of weakly interacting massive particles (WIMPs), there is the exciting possibility that some of these unIDs may actually be DM sources, emitting gamma-rays from WIMPs annihilation. We propose a new approach to solve the standard, machine learning (ML) binary classification problem of disentangling prospective DM sources (simulated data) from astrophysical sources (observed data) among the unIDs of the 4FGL Fermi-LAT catalogue. We artificially build two systematic features for the DM data which are originally inherent to observed data: the detection significance and the uncertainty on the spectral curvature. We do it by sampling from the observed population of unIDs, assuming that the DM distributions would, if any, follow the latter. We consider different ML models: Logistic Regression, Neural Network (NN), Naive Bayes, and Gaussian Process, out of which the best, in terms of classification accuracy, is the NN, achieving around 93 . 3 per cent +/- 0 . 7 per cent performance. Other ML evaluation parameters, such as the True Ne gativ e and True Positive rates, are discussed in our work. Applying the NN to the unIDs sample, we find that the de generac y between some astrophysical and DM sources can be partially solved within this methodology. None the less, we conclude that there are no DM source candidates among the pool of 4FGL Fermi-LAT unIDs.
Address [Gammaldi, V; Sanchez-Conde, M. A.; Coronado-Blazquez, J.] Univ Autonoma Madrid, Departamentode Fis Teor, E-28049 Madrid, Spain, Email: viviana.gammaldi@uam.es;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000937053400014 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 5489
Permanent link to this record