|   | 
Details
   web
Records
Author Llosa, G.; Trovato, M.; Barrio, J.; Etxebeste, A.; Muñoz, E.; Lacasta, C.; Oliver, J.F.; Rafecas, M.; Solaz, C.; Solevi, P.
Title First Images of a Three-layer compton Telescope prototype for Treatment Monitoring in hadron Therapy Type Journal Article
Year 2016 Publication Frontiers in Oncology Abbreviated Journal Front. Oncol.
Volume 6 Issue Pages 14 - 6pp
Keywords Compton camera; Compton telescope; hadron therapy; treatment monitoring; LaBr3
Abstract A Compton telescope for dose monitoring in hadron therapy is under development at IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomulti-plier arrays. Na-22 sources have been successfully imaged reconstructing the data with an ML-EM code. Calibration and temperature stabilization are necessary for the prototype operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been obtained in the first imaging tests.
Address [Llosa, Gabriela; Trovato, Marco; Barrio, John; Etxebeste, Ane; Munoz, Enrique; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Solaz, Carles; Solevi, Paola] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: gabriela.llosa@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2234-943x ISBN Medium
Area Expedition Conference
Notes WOS:000369799800001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ elepoucu @ Serial 2785
Permanent link to this record
 

 
Author Pich, A.; Rodriguez-Sanchez, A.
Title Determination of the QCD coupling from ALEPH tau decay data Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 3 Pages 034027 - 26pp
Keywords
Abstract We present a comprehensive study of the determination of the strong coupling from tau decay, using the most recent release of the experimental ALEPH data. We critically review all theoretical strategies used in previous works and put forward various novel approaches which allow one to study complementary aspects of the problem. We investigate the advantages and disadvantages of the different methods, trying to uncover their potential hidden weaknesses and test the stability of the obtained results under slight variations of the assumed inputs. We perform several determinations, using different methodologies, and find a very consistent set of results. All determinations are in excellent agreement, and allow us to extract a very reliable value for alpha(s)(m(tau)(2)). The main uncertainty originates in the pure perturbative error from unknown higher orders. Taking into account the systematic differences between the results obtained with the contour-improved perturbation theory and fixed-order perturbation theory prescriptions, we find alpha((nf=3))(s) (m(tau)(2)) = 0.328 +/- 0.013 which implies alpha((nf=5))(s) (M-Z(2)) = 0.1197 +/- 0.0015.
Address [Pich, Antonio; Rodriguez-Sanchez, Antonio] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Apartat Correus 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000381413500001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 2795
Permanent link to this record
 

 
Author De Romeri, V.; Fernandez-Martinez, E.; Sorel, M.
Title Neutrino oscillations at DUNE with improved energy reconstruction Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 030 - 25pp
Keywords CP violation; Neutrino Physics
Abstract We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to delta(CP), is better reconstructed. These effects lead to a significant improvement in the fraction of values of delta(CP) for which a 5 sigma discovery of leptonic CP-violation would be possible. The precision of the delta(CP) measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from 26 degrees to 18 degrees for a 300 MW.kt.yr exposure. We therefore believe that this potential gain in physics reach merits further investigations of the detector performance achievable in DUNE.
Address [De Romeri, Valentina; Fernandez-Martinez, Enrique] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: valentina.deromeri@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382887300001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 2807
Permanent link to this record
 

 
Author Pich, A.; Rodriguez-Sanchez, A.
Title Updated determination of alpha(s)(m(tau)(2)) from tau decays Type Journal Article
Year 2016 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A
Volume 31 Issue 30 Pages 1630032 - 15pp
Keywords QCD; strong coupling; tau decays
Abstract Using the most recent release of the ALEPH tau decay data, we present a very detailed phenomenological update of the alpha(s)(m(tau)(2)) determination. We have exploited the sensitivity to the strong coupling in many different ways, exploring several complementary methodologies. All determinations turn out to be in excellent agreement, allowing us to extract a very reliable value of the strong coupling. We find alpha((nf =3))(s)(m(tau)(2)) = 0.328 +/- 0.012 which implies alpha((nf=5))(s)(M-Z(2)) = 0.1197 +/- 0.0014. We critically revise previous work, and point out the problems flawing some recent analyses which claim slightly smaller values.
Address [Pich, Antonio; Rodriguez-Sanchez, Antonio] Univ Valencia, IFIC, CSIC, Dept Fis Teor, Apt Correus 22085, F-46071 Valencia, Spain, Email: Antonio.Pich@ific.uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-7323 ISBN Medium
Area Expedition Conference
Notes WOS:000383788500002 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 2818
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.
Title Transit dose comparisons for Co-60 and Ir-192 HDR sources Type Journal Article
Year 2016 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.
Volume 36 Issue 4 Pages 858-864
Keywords Monte Carlo; dosimetry; HDR brachytherapy; transit dose
Abstract The goal of this study is to evaluate the ambient dose due to the transit of high dose rate (HDR) Co-60 sources along a transfer tube as compared to Ir-192 ones in a realistic clinical scenario. This goal is accomplished by evaluating air-kerma differences with Monte Carlo calculations using PENELOPE2011. Scatter from both the afterloader and the patient was not taken into account. Two sources, mHDR-v2 and Flexisource Co-60, (Elekta Brachytherapy, Veenendaal, the Netherlands) have been considered. These sources were simulated within a standard transfer tube located in an infinite air phantom. The movement of the source was included by displacing their positions along the connecting tube from z = – 75 cm to z = + 75 cm and combining them. Since modern afterloaders like Flexitron (Elekta) or Saginova (BEBIG GmbH) are able to use equally 192Ir and 60Co sources, it was assumed that both sources are displaced with equal speed. Typical HDR source activity content values were provided by the manufacturer. 2D distributions were obtained with type-A uncertainties (k = 2) less than 0.01%. From those, the air-kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding typical activities. It was found that it varies slowly with distance (less than 10% variation at 75 cm) but strongly in time due to the shorter half-life of the 192Ir (73.83 d). The maximum ratio is located close to the tube. It reaches a value of 0.57 when the typical activity of the sources at the time when they were installed by the vendor was used. Such ratio increases up to 1.28 at the end of the recommended working life (90 d) of the Ir-192 source. Co-60/Ir-192 air-kerma ratios are almost constant (0.51-0.57) in the vicinity of the source-tube with recent installed sources. Nevertheless, air-kerma ratios increase rapidly (1.15-1.29) whenever the Ir-192 is approaching the end of its life. In case of a medical event requiring the medical staff to access the treatment room, these ratios indicate that the dosimetric impact on the medical team will be lower, with a few exceptions, in the case of Co-60-based HDR brachytherapy as compared to Ir-192-based one when typical air-kerma strength values are considered.
Address [Gimenez-Alventosa, Vicent; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0952-4746 ISBN Medium
Area Expedition Conference
Notes WOS:000386436100002 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 2839
Permanent link to this record