|   | 
Details
   web
Records
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V.R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Search for scalar leptoquarks in pp collisions at root s=13TeV with the ATLAS experiment Type Journal Article
Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 18 Issue Pages 093016 - 25pp
Keywords leptoquark; ATLAS; LHC
Abstract An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in pp collisions at root s = 13 TeV at the large hadron collider, have been considered. An integrated luminosity of 3.2 fb(-1), corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 and 1050 GeV (1160 and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.
Address [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000384093400001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 2828
Permanent link to this record
 

 
Author Davidek, T.; Fiorini, L.
Title Search for Lepton-Flavor-Violating Decays of Bosons With the ATLAS Detector Type Journal Article
Year 2020 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 8 Issue Pages 149 - 13pp
Keywords lepton-flavor-violating decays; Z boson; Higgs boson; ATLAS; LHC; particle physics
Abstract The quest for lepton-flavor-violating processes at the LHC represents one of the key searches for new physics beyond the Standard Model. This review summarizes the direct searches for lepton-flavor-violating decays of heavy bosons with the ATLAS detector, using proton-proton collisions at the center-of-mass energy of 13 TeV.
Address [Davidek, Tomas] Charles Univ Prague, Inst Particle & Nucl Phys IPNP, Fac Math & Phys, Prague, Czech Republic, Email: tomas.davidek@cern.ch;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000536708200001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 4416
Permanent link to this record
 

 
Author Mavromatos, N.E.; Mitsou, V.A.
Title Magnetic monopoles revisited: Models and searches at colliders and in the Cosmos Type Journal Article
Year 2020 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 35 Issue 23 Pages 2030012 - 81pp
Keywords Magnetic monopoles; electromagnetism; theory; experimental techniques; searches; LHC; ATLAS; MoEDAL; IceCube; ANTARES
Abstract In this review, we discuss recent developments in both the theory and the experimental searches of magnetic monopoles in past, current and future colliders and in the Cosmos. The theoretical models include, apart from the standard Grand Unified Theories, extensions of the Standard Model that admit magnetic monopole solutions with finite energy and masses that can be as light as a few TeV. Specifically, we discuss, among other scenarios, modified Cho-Maison monopoles and magnetic monopoles in (string-inspired, higher derivative) Born-Infeld extensions of the hypercharge sector of the Standard Model. We also outline the conditions for which effective field theories describing the interaction of monopoles with photons are valid and can be used for result interpretation in monopole production at colliders. The experimental part of the review focuses on, past and present, cosmic and collider searches, including the latest bounds on monopole masses and magnetic charges by the ATLAS and MoEDAL experiments at the LHC, as well as prospects for future searches.
Address [Mavromatos, Nick E.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: nikolaos.mavromatos@kcl.ac.uk;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000563095400001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 4516
Permanent link to this record
 

 
Author Ruhr, F. et al; Escobar, C.; Miñano, M.
Title Testbeam studies of barrel and end-cap modules for the ATLAS ITk strip detector before and after irradiation Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 979 Issue Pages 164430 - 6pp
Keywords Particle physics; Tracking detectors; ATLAS; HL-LHC; Test beam
Abstract In order to cope with the occupancy and radiation doses expected at the High-Luminosity LHC, the ATLAS experiment will replace its Inner Detector with an all-silicon Inner Tracker (ITk), consisting of pixel and strip subsystems. In the last two years, several prototype ITk strip modules have been tested using beams of high energy electrons produced at the DESY-II testbeam facility. Tracking was provided by EUDET telescopes. The modules tested are built from two sensor types: the rectangular ATLAS17LS, which will be used in the outer layers of the central barrel region of the detector, and the annular ATLAS12EC, which will be used in the innermost ring (R0) of the forward region. Additionally, a structure with two RO modules positioned back-to-back has been measured, demonstrating space point reconstruction using the stereo angle of the strips. Finally, one barrel and one RO module have been measured after irradiation to 40% beyond the expected end-of-lifetime fluence. The data obtained allow for thorough tests of the module performance, including charge collection, noise occupancy, detection efficiency, and tracking performance. The results give confidence that the ITk strip detector will meet the requirements of the ATLAS experiment.
Address [Ruehr, F.; Argos, C. Garcia; Hauser, M.; Moos, F.; Rodriguez, A. Rodriguez; Sperlich, D.; Wiik-Fuchs, L.] Albert Ludwigs Univ Freiburg, Phys Inst, Freiburg, Germany, Email: frederik.ruehr@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000573295200013 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 4548
Permanent link to this record
 

 
Author Fernandez-Tejero, J.; Bartl, U.; Docke, M.; Fadeyev, V.; Fleta, C.; Hacker, J.; Hommels, B.; Lacasta, C.; Parzefall, U.; Soldevila, U.; Stocker, G.; Ullan, M.; Unno, Y.
Title Design and evaluation of large area strip sensor prototypes for the ATLAS Inner Tracker detector Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 981 Issue Pages 164536 - 6pp
Keywords ATLAS; Silicon strip sensors; Large area silicon sensors; Layout design; Prototype evaluation; Market survey
Abstract The ATLAS community is facing the last stages prior to the production of the upgraded silicon strip Inner Tracker for the High-Luminosity Large Hadron Collider. An extensive Market Survey was carried out in order to evaluate the capability of different foundries to fabricate large area silicon strip sensors, satisfying the ATLAS specifications. The semiconductor manufacturing company, Infineon Technologies AG, was one of the two foundries, along with Hamamatsu Photonics K.K., that reached the last stage of the evaluation for the production of the new devices. The full prototype wafer layout for the participation of Infineon, called ATLAS17LS-IFX, was designed using a newly developed Python-based Automatic Layout Generation Tool, able to rapidly design sensors with different characteristics and dimensions based on a few geometrical and technological input parameters. This work presents the layout design process and the results obtained from the evaluation of the new Infineon large area sensors before and after proton and neutron irradiations, up to fluences expected in the inner layers of the future ATLAS detector.
Address [Fernandez-Tejero, J.; Fleta, C.; Ullan, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000581799800023 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 4579
Permanent link to this record
 

 
Author Hara, K. et al; Escobar, C.; Garcia, C.; Lacasta, C.; Miñano, M.; Soldevila, U.
Title Charge collection study with the ATLAS ITk prototype silicon strip sensors ATLAS17LS Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 983 Issue Pages 164422 - 6pp
Keywords ATLAS ITk; Microstrip sensor; Charge collection; Radiation damage
Abstract The inner tracker of the ATLAS detector is scheduled to be replaced by a completely new silicon-based inner tracker (ITk) for the Phase-II of the CERN LHC (HL-LHC). The silicon strip detector covers the volume 40 < R < 100 cm in the radial and vertical bar z vertical bar <300 cm in the longitudinal directions. The silicon sensors for the detector will be fabricated using the n(+)-on-p 6-inch wafer technology, for a total of 22,000 wafers. Intensive studies were carried out on the final prototype sensors ATLAS17LS fabricated by Hamamatsu Photonics (HPK). The charge collection properties were examined using penetrating Sr-90 beta-rays and the ALIBAVA fast readout system for the miniature sensors of 1 cm xl cm in area. The samples were irradiated by protons in the 27 MeV Birmingham Cyclotron, the 70 MeV CYRIC at Tohoku University, and the 24 GeV CERN-PS, and by neutrons at Ljubljana TAIGA reactor for fluence values up to 2 x 10(15) n(eq)/cm(2). The change in the charge collection with fluence was found to be similar to the previous prototype ATLAS12, and acceptable for the ITk. Sensors with two active thicknesses, 300 μm (standard) and 240 μm (thin), were compared and the difference in the charge collection was observed to be small for bias voltages up to 500 V. Some samples were also irradiated with gamma radiation up to 2 MGy, and the full depletion voltage was found to decrease with the dose. This was caused by the Compton electrons due to the( 60)Co gamma radiation. To summarize, the design of the ATLAS17LS and technology for its fabrication have been verified for implementation in the ITk. We are in the stage of sensor pre-production with the first sensors already delivered in January of 2020.
Address [Hara, K.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan, Email: hara@hep.px.tsukuba.ac.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000581808300002 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 4606
Permanent link to this record
 

 
Author Latonova, V. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1050 Issue Pages 168119 - 5pp
Keywords HL-LHC; ATLAS ITk; Silicon micro-strip sensor; Polysilicon bias resistor; Testchip
Abstract The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.
Address [Latonova, V.; Federicova, P.; Kroll, J.; Kvasnicka, J.; Mikestikova, M.] Acad Sci Czech Republ, Inst Phys, Slovance 2, Prague 8, Czech Republic, Email: vera.latonova@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001035405300001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 5601
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Performance and calibration of quark/gluon-jet taggers using 140 fb-1 of pp collisions at √s=13 TeV with the ATLAS detector Type Journal Article
Year 2024 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 48 Issue 2 Pages 023001 - 25pp
Keywords Atlas; Jet; Quark; Gluon; Tagging
Abstract The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using root s = 13 TeV proton-proton collision data with an integrated luminosity of 140 fb(-1) collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points.
Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:001187976400001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 6033
Permanent link to this record
 

 
Author Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169457 - 9pp
Keywords HL-LHC; ATLAS; ITk; Strip sensors
Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001249611300001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 6158
Permanent link to this record
 

 
Author Valero, A.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Sanchis, E.; Solans, C.; Torres, J.; Valls Ferrer, J.A.
Title The ATLAS tile calorimeter ROD injector and multiplexer board Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 629 Issue 1 Pages 74-79
Keywords LHC; ATLAS; Calorimeter; Data acquisition; FPGA; Bit error rate
Abstract The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.
Address [Valero, A.; Castillo, V.; Ferrer, A.; Hernandez, Y.; Higon, E.; Solans, C.; Valls, J. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: alberto.valero@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000287556100012 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 555
Permanent link to this record