|   | 
Details
   web
Records
Author Martinez Torres, A.; Khemchandani, K.P.; Roca, L.; Oset, E.
Title Few-body systems consisting of mesons Type Journal Article
Year 2020 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.
Volume 61 Issue 4 Pages 35 - 16pp
Keywords
Abstract We present a work which is meant to inspire the few-body practitioners to venture into the study of new, more exotic, systems and to hadron physicists, working mostly on two-body problems, to move in the direction of studying related few-body systems. For this purpose we devote the discussions in the introduction to show how the input two-body amplitudes can be easily obtained using techniques of the chiral unitary theory, or its extensions to the heavy quark sector. We then briefly explain how these amplitudes can be used to solve the Faddeev equations or a simpler version obtained by treating the three-body scattering as that of a particle on a fixed center. Further, we give some examples of the results obtained by studying systems involving mesons. We have also addressed the field of many meson systems, which is currently almost unexplored, but for which we envisage a bright future. Finally, we give a complete list of works dealing with unconventional few-body systems involving one or several mesons, summarizing in this way the findings on the topic, and providing a motivation for those willing to investigate such systems.
Address [Martinez Torres, A.] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil, Email: amartine@if.usp.br;
Corporate Author Thesis
Publisher Springer Wien Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-7963 ISBN Medium
Area Expedition Conference
Notes WOS:000572646500001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 4546
Permanent link to this record
 

 
Author Dias, J.M.; Toledo, G.; Roca, L.; Oset, E.
Title Unveiling the K-1(1270) double-pole structure in the (B)over-bar -> J/psi rho(K)over-bar and (B)over-bar -> J/psi(K)over-bar*pi decays Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 11 Pages 116019 - 13pp
Keywords
Abstract By looking at the pseudoscalar-vector meson spectra in the (B) over bar -> J/psi rho(K) over bar and (B) over bar -> J/psi(K) over bar*pi weak decays, we theoretically investigate the double-pole structure of the K-1 (1270) resonance by using the chiral unitary approach to account for the final-state interactions between the pseudoscalar (P) and vector (V) mesons. The K-1 (1270) resonance is dynamically generated through these interactions in coupled channels and influences the shape of the invariant mass distributions under consideration. We show how these shapes are affected by the K-1 (1270) double-pole structure to confront the results from our model with future experiments that might investigate the PV spectra in these decays.
Address [Toledo, G.] Univ Nacl Autonoma Mexico, Inst Fis, AP 20-364, Ciudad De Mexico 01000, Mexico, Email: jorgivan.mdias@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000664520700018 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 4886
Permanent link to this record
 

 
Author Roca, L.; Liang, W.H.; Oset, E.
Title Inconsistency of the data on the K-1(1270) -> pi K-0*(1430) decay width Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 824 Issue Pages 136827 - 3pp
Keywords
Abstract We show, using the same Lagrangian for the K-1(1270) -> pi K-0*(1430) and K-0*(1430) -> K-1 (1270)pi decays, that the present PDG data on the partial decay width of K-1 (1270) -> pi K-0*(1430) implies a width for K-0*(1430) -> K-1 (1270)pi decay which is about one order of magnitude larger than the total K-0*(1430) width. A discussion on this inconsistency is done, stressing its relationship to the existence of two K-1(1270) states obtained with the chiral unitary theory, which are not considered in the experimental analyses of K pi pi data.
Address [Roca, L.] Univ Murcia, Dept Fis, E-30071 Murcia, Spain, Email: luisroca@um.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000734123200006 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5061
Permanent link to this record
 

 
Author Dai, L.R.; Oset, E.; Feijoo, A.; Molina, R.; Roca, L.; Martinez Torres, A.; Khemchandani, K.P.
Title Masses and widths of the exotic molecular B-(s)(()*B-)((s))(*()) states Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 7 Pages 074017 - 11pp
Keywords
Abstract We study the interaction of the doubly bottom systems BB, B*B, BsB, B-s*B, B*B*, B*B-S, B*B-s*, BsBs, BsBs*, B-s*B-s* by means of vector meson exchange with Lagrangians from an extension of the local hidden gauge approach. The full s-wave scattering matrix is obtained implementing unitarity in coupled channels by means of the Bethe-Salpeter equation. We find poles below the channel thresholds for the attractively interacting channels B*B in I = 0, B-s*B – B*B-s in I = 1/2, B* B* in I = 0, and B-s*B* in I = 1/2, all of them with J(P) = 1(+). For these cases the widths are evaluated identifying the dominant source of imaginary part. We find binding energies of the order of 10-20 MeV, and the widths vary much from one system to the other: of the order of 10-100 eV for the B* B system and B-s*B – B* B-s, about 6 MeV for the B*B* system and of the order of 0.5 MeV for the B-s*B* system.
Address [Dai, L. R.] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China, Email: dailianrong@zjhu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000809898400002 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5317
Permanent link to this record
 

 
Author Roca, L.; Song, J.; Oset, E.
Title Molecular pentaquarks with hidden charm and double strangeness Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages 094005 - 8pp
Keywords
Abstract We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c<overline>cssn and c<overline>csss, where mesons are pseudoscalars or vectors, and baryons have JP = 1/2+ or 3/2+. The aim is to explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The required PPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin and flavor wave function to evaluate the BBV vertex. We find four different poles in the double strange sector, some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.
Address [Roca, L.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain, Email: luisroca@um.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224715500002 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 6135
Permanent link to this record