Roca, L., Nieves, J., & Oset, E. (2015). LHCb pentaquark as a (D)over-bar*Sigma(c) – (D)over-bar*Sigma(c)* molecular state. Phys. Rev. D, 92(9), 094003–6pp.
Abstract: We perform a theoretical analysis of the Lambda(b) -> J/psi K(-)p reaction from where a recent LHCb experiment extracts a Lambda(1405) contribution in the K(-)p spectrum close to threshold and two baryon states of hidden charm in the J/psi p spectrum. We recall that baryon states of this type have been theoretically predicted matching the mass, width and J(P) of the experiment; concretely some states built up from the J/psi N, (D) over bar*Lambda(c), (D) over bar*Sigma(c), (D) over bar Sigma(c)* and (D) over bar*Sigma(c)* coupled channels. We assume that the observed narrow state around 4450 MeV has this nature and we are able to describe simultaneously the shapes and relative strength of the the K(-)p mass distribution close to threshold and the peak of the J/psi p distribution, with values of the J/psi p coupling to the resonance in line with the theoretical ones. The nontrivial matching of many properties gives support to a J(P) = 3/2(-) assignment to this state and to its nature as a molecular state mostly made of (D) over bar*Sigma(c) and (D) over bar*Sigma(c)*.
|
Boronat, M., Fuster, J., Garcia, I., Ros, E., & Vos, M. (2015). A robust jet reconstruction algorithm for high-energy lepton colliders. Phys. Lett. B, 750, 95–99.
Abstract: We propose a new sequential jet reconstruction algorithm for future lepton colliders at the energy frontier. The Valencia algorithm combines the natural distance criterion for lepton colliders with the greater robustness against backgrounds of algorithms adapted to hadron colliders. Results on a detailed Monte Carlo simulation of t (t) over tilde and ZZ production at future linear e(+)e(-) colliders (ILC and CLIC) with a realistic level of background overlaid, show that it achieves better performance in the presence of background than the classical algorithms used at previous e(+)e(-) colliders.
|
Richart, J., Otal, A., Rodriguez, S., Nicolas, A. I., DePiaggio, M., Santos, M., et al. (2015). A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template. J. Contemp. Brachytherapy, 7(5), 407–414.
Abstract: Purpose: There are perineal templates for interstitial implants such as MUPIT and Syed applicators. Their limitations are the intracavitary component deficit and the necessity to use computed tomography (CT) for treatment planning since both applicators are non-magnetic resonance imaging (MRI) compatibles. To overcome these problems, a new template named Template Benidorm (TB) has been recently developed. Titanium needles are usually reconstructed based on their own artifacts, mainly in T1-weighted sequence, using the void on the tip as the needle tip position. Nevertheless, patient tissues surrounding the needles present heterogeneities that complicate the accurate identification of these artifact patterns. The purpose of this work is to improve the titanium needle reconstruction uncertainty for the TB case using a simple method based on the free needle lengths and typical MRI pellets markers. Material and methods: The proposed procedure consists on the inclusion of three small A-vitamin pellets (hyper-intense on MRI images) compressed by both applicator plates defining the central plane of the plate's arrangement. The needles used are typically 20 cm in length. For each needle, two points are selected defining the straight line. From such line and the plane equations, the intersection can be obtained, and using the free length (knowing the offset distance), the coordinates of the needle tip can be obtained. The method is applied in both T1W and T2W acquisition sequences. To evaluate the inter-observer variation of the method, three implants of T1W and another three of T2W have been reconstructed by two different medical physicists with experience on these reconstructions. Results and conclusions: The differences observed in the positioning were significantly smaller than 1 mm in all cases. The presented algorithm also allows the use of only T2W sequence either for contouring or reconstruction purposes. The proposed method is robust and independent of the visibility of the artifact at the tip of the needle.
|
Dorado-Morales, P., Vilanova, C., Pena-Garay, C., Marti, J. M., & Porcar, M. (2015). Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling. Sci Rep, 5, 18396–6pp.
Abstract: We propose a new strategy to identify and visualize bacterial consortia by conducting replicated culturing of environmental samples coupled with high-throughput sequencing and multidimensional scaling analysis, followed by identification of bacteria-bacteria correlations and interactions. We conducted a proof of concept assay with pine-tree resin-based media in ten replicates, which allowed detecting and visualizing dynamical bacterial associations in the form of statistically significant and yet biologically relevant bacterial consortia.
|
Palomo, R., Pujades, M. C., Gimeno-Olmos, J., Carmona, V., Lliso, F., Candela-Juan, C., et al. (2015). Evaluation of lens absorbed dose with Cone Beam IGRT procedures. J. Radiol. Prot., 35(4), N33–N41.
Abstract: The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v. 1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71 +/- 0.07 mGy/CBCT and 0.70 +/- 0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.
|