toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mateu, V.; Stewart, I.W.; Thaler, J. url  doi
openurl 
  Title Power corrections to event shapes with mass-dependent operators Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 1 Pages 014025 - 25pp  
  Keywords  
  Abstract We introduce an operator depending on the "transverse velocity'' r that describes the effect of hadron masses on the leading 1/Q power correction to event-shape observables. Here, Q is the scale of the hard collision. This work builds on earlier studies of mass effects by Salam and Wicke [J. High Energy Phys. 05 (2001) 061] and of operators by Lee and Sterman [Phys. Rev. D 75, 014022 (2007)]. Despite the fact that different event shapes have different hadron mass dependence, we provide a simple method to identify universality classes of event shapes whose power corrections depend on a common nonperturbative parameter. We also develop an operator basis to show that at a fixed value of Q, the power corrections for many classic observables can be determined by two independent nonperturbative matrix elements at the 10% level. We compute the anomalous dimension of the transverse velocity operator, which is multiplicative in r and causes the power correction to exhibit nontrivial dependence on Q. The existence of universality classes and the relevance of anomalous dimensions are reproduced by the hadronization models in Pythia 8 and Herwig++, though the two programs differ in the values of their low-energy matrix elements.  
  Address [Mateu, Vicent; Stewart, Iain W.; Thaler, Jesse] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314229300005 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1323  
Permanent link to this record
 

 
Author Giusarma, E.; de Putter, R.; Mena, O. url  doi
openurl 
  Title Testing standard and nonstandard neutrino physics with cosmological data Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 4 Pages 043515 - 9pp  
  Keywords  
  Abstract Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.  
  Address [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314765800001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1326  
Permanent link to this record
 

 
Author Serenelli, A.; Pena-Garay, C.; Haxton, W.C. url  doi
openurl 
  Title Using the standard solar model to constrain solar composition and nuclear reaction S factors Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 4 Pages 043001 - 9pp  
  Keywords  
  Abstract While standard solar model (SSM) predictions depend on approximately 20 input parameters, SSM neutrino flux predictions are strongly correlated with a single model output parameter, the core temperature T-c. Consequently, one can extract physics from solar neutrino flux measurements while minimizing the consequences of SSM uncertainties, by studying flux ratios with appropriate power-law weightings tuned to cancel this T-c dependence. We reexamine an idea for constraining the primordial C + N content of the solar core from a ratio of CN-cycle O-15 to pp-chain B-8 neutrino fluxes, showing that non-nuclear SSM uncertainties in the ratio are small and effectively governed by a single parameter, the diffusion coefficient. We point out that measurements of both CN-I cycle neutrino branches-O-15 and N-13 beta-decay-could, in principle, lead to separate determinations of the core C and N abundances, due to out-of-equilibrium CN-cycle burning in the cooler outer layers of the solar core. Finally, we show that the strategy of constructing “minimum uncertainty” neutrino flux ratios can also test other properties of the SSM. In particular, we demonstrate that a weighted ratio of Be-7 and B-8 fluxes constrains a product of S-factors to the same precision currently possible with laboratory data.  
  Address [Serenelli, Aldo] CSIC IEEC, Inst Ciencias Espacio, Fac Ciencies, Bellaterra 08193, Spain, Email: aldos@ice.csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314685400001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1328  
Permanent link to this record
 

 
Author AGATA Collaboration (Crespi, F.C.L. et al); Gadea, A. url  doi
openurl 
  Title Response of AGATA segmented HPGe detectors to gamma rays up to 15.1 MeV Type Journal Article
  Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 705 Issue Pages 47-54  
  Keywords AGATA; Gamma-ray spectroscopy; Gamma-ray tracking; HPGe detectors; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulations  
  Abstract The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(B-11,n gamma)C-12 at E-beam=19.1 MeV, while gamma rays between 2 and 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%.Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation caused by n-capture in Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape analysis is discussed.  
  Address [Crespi, F. C. L.; Avigo, R.; Camera, F.; Bottoni, S.; Bracco, A.; Ceruti, S.; Giaz, A.; Leoni, S.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy, Email: fabio.crespi@mi.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314826000009 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1329  
Permanent link to this record
 

 
Author Basso, L.; Belyaev, A.; Chowdhury, D.; Hirsch, M.; Khalil, S.; Moretti, S.; O'Leary, B.; Porod, W.; Staub, F. url  doi
openurl 
  Title Proposal for generalised supersymmetry Les Houches Accord for see-saw models and PDG numbering scheme Type Journal Article
  Year 2013 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 184 Issue 3 Pages 698-719  
  Keywords SLHA; See-saw; PDG scheme  
  Abstract The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. In addition, we generalise the PDG numbering scheme to reflect the properties of the particles. (c) 2012 Elsevier B.V. All rights reserved.  
  Address [Basso, L.; Belyaev, A.; Khalil, S.; Moretti, S.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: lorenzo.basso@physik.uni-freiburg.de;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315125500027 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1341  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva