|   | 
Details
   web
Records
Author de Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Status of neutrino oscillations 2018: 3 sigma hint for normal mass ordering and improved CP sensitivity Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 782 Issue Pages 633-640
Keywords Neutrino mass and mixing; Neutrino oscillation; Solar and atmospheric neutrinos; Reactor and accelerator neutrinos; Neutrino telescopes
Abstract We present a new global fit of neutrino oscillation parameters within the simplest three-neutrino picture, including new data which appeared since our previous analysis[1]. In this update we include new long-baseline neutrino data involving the antineutrino channel in T2K, as well as new data in the neutrino channel, data from NO nu A, as well as new reactor data, such as the Daya Bay 1230 days electron antineutrino disappearance spectrum data and the 1500 live days prompt spectrum from RENO, as well as new Double Chooz data. We also include atmospheric neutrino data from the IceCube DeepCore and ANTARES neutrino telescopes and from Super-Kamiokande. Finally, we also update our solar oscillation analysis by including the 2055-day day/night spectrum from the fourth phase of the Super-Kamiokande experiment. With the new data we find a preference for the atmospheric angle in the upper octant for both neutrino mass orderings, with maximal mixing allowed at Delta chi(2)= 1.6 (3.2) for normal (inverted) ordering. We also obtain a strong preference for values of the CP phase delta in the range [pi, 2 pi], excluding values close to pi/2at more than 4 sigma. More remarkably, our global analysis shows a hint in favorof the normal mass ordering over the inverted one at more than 3 sigma. We discuss in detail the status of the mass ordering, CP violation and octant sensitivities, analyzing the interplay among the different neutrino data samples.
Address [de Salas, P. F.; Ternes, C. A.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000438486900094 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 3665
Permanent link to this record
 

 
Author Gariazzo, S.; Archidiacono, M.; de Salas, P.F.; Mena, O.; Ternes, C.A.; Tortola, M.
Title Neutrino masses and their ordering: global data, priors and models Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 011 - 22pp
Keywords neutrino masses from cosmology; neutrino properties; cosmological parameters from CMBR; double beta decay
Abstract We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions.
Address [Gariazzo, S.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: gariazzo@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000445497200001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 3736
Permanent link to this record
 

 
Author de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tortola, M.
Title Constraining the invisible neutrino decay with KM3NeT-ORCA Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 789 Issue Pages 472-479
Keywords Neutrino masses and mixing; Neutrino oscillations; Neutrino decay; Neutrino telescopes
Abstract Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin(2) theta(23) and Delta m(31)(2), as well as the sensitivity to the neutrino mass ordering.
Address [de Salas, P. F.; Pastor, S.; Ternes, C. A.; Thakore, T.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000457165400063 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 3902
Permanent link to this record
 

 
Author Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F.
Title Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 103 - 23pp
Keywords Beyond Standard Model; Neutrino Physics; CP violation; Solar and Atmospheric Neutrinos
Abstract We explore the potential of current and next generation of coherent elastic neutrino-nucleus scattering (CE nu NS) experiments in probing neutrino electromagnetic interactions. On the basis of a thorough statistical analysis, we determine the sensitivities on each component of the Majorana neutrino transition magnetic moment (TMM), vertical bar Lambda(i)vertical bar, that follow from low-energy neutrino-nucleus experiments. We derive the sensitivity to neutrino TMM from the first CE nu NS measurement by the COHERENT experiment, at the Spallation Neutron Source. We also present results for the next phases of COHERENT using HPGe, LAr and NaI[Tl] detectors and for reactor neutrino experiments such as CONUS, CONNIE, MINER, TEXONO and RED100. The role of the CP violating phases in each case is also briefly discussed. We conclude that future CE nu NS experiments with low-threshold capabilities can improve current TMM limits obtained from Borexino data.
Address [Miranda, O. G.] Ctr Invest & Estudios Avanzados, IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000476512900004 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 4087
Permanent link to this record
 

 
Author Miranda, O.G.; Papoulias, D.K.; Sanchez Garcia, G.; Sanders, O.; Tortola, M.; Valle, J.W.F.
Title Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with liquid Argon Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 130 - 17pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract The CENNS-10 experiment of the COHERENT collaboration has recently reported the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in liquid Argon with more than 3 sigma significance. In this work, we exploit the new data in order to probe various interesting parameters which are of key importance to CEvNS within and beyond the Standard Model. A dedicated statistical analysis of these data shows that the current constraints are significantly improved in most cases. We derive a first measurement of the neutron rms charge radius of Argon, and also an improved determination of the weak mixing angle in the low energy regime. We also update the constraints on neutrino non-standard interactions, electromagnetic properties and light mediators with respect to those derived from the first COHERENT-CsI data.
Address [Miranda, O. G.; Sanchez Garcia, G.; Sanders, O.] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000538854400001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 4425
Permanent link to this record