|   | 
Details
   web
Records
Author Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; Gonzalez, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C.A.; Valiente-Dobon, J.J.
Title Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 6 Pages 3134-3139
Keywords FPGA; front-end electronics; gamma-ray spectroscopy; germanium detectors
Abstract In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.53% at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.
Address [Barrientos, D.; Bortolato, D.; Cocconi, P.; Gulmini, M.; Rosso, D.; Toniolo, N.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy, Email: diego.barrientos@lnl.infn.it
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000372013500005 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 2612
Permanent link to this record
 

 
Author Marco-Hernandez, R.; Bau, M.; Ferrari, M.; Ferrari, V.; Pedersen, F.; Soby, L.
Title A Low-Noise Charge Amplifier for the ELENA Trajectory, Orbit, and Intensity Measurement System Type Journal Article
Year 2017 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 64 Issue 9 Pages 2465-2473
Keywords Beam position monitor (BPM); charge sensitive amplifier; instrumentation for accelerators; low-noise amplifier; particle accelerators; printed circuits
Abstract A low-noise head amplifier has been developed for the extra low energy antiproton ring beam trajectory, orbit, and intensity measurement system at CERN. This system is based on 24 double-electrode electrostatic beam position monitors installed around the ring. A head amplifier is placed close to each beam position monitor to amplify the electrode signals and generate a difference and a sum signal. These signals are sent to the digital acquisition system, about 50 m away from the ring, where they are digitized and further processed. The beam position can be measured by dividing the difference signal by the sum signal while the sum signal gives information relative to the beam intensity. The head amplifier consists of two discrete charge preamplifiers with junction field effect transistor (JFET) inputs, a sum and a difference stage, and two cable drivers. Special attention has been paid to the amplifier printed circuit board design to minimize the parasitic capacitances and inductances at the charge amplifier stages to meet the gain and noise requirements. The measurements carried out on the head amplifier showed a gain of 40.5 and 46.5 dB for the sum and difference outputs with a bandwidth from 200 Hz to 75 MHz and an input voltage noise density lower than 400 pV/v Hz. Twenty head amplifiers have been already installed in the ring and they have been used to detect the first beam signals during the first commissioning stage in November 2016.
Address [Marco-Hernandez, Ricardo; Pedersen, Flemming; Soby, Lars] CERN, CH-1217 Meyrin, Switzerland, Email: rmarco@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000411029500002 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3298
Permanent link to this record
 

 
Author Briz, J.A.; Nerio, A.N.; Ballesteros, C.; Borge, M.J.G.; Martinez, P.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Maj, A.; Olko, P.; Parol, W.; Pedracka, A.; Sowicki, B.; Zieblinski, M.; Nacher, E.
Title Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators Type Journal Article
Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 69 Issue 4 Pages 696-702
Keywords LaBr3; particle tracking; proton computed tomography (pCT); proton radiograph; proton therapy; scintillation detectors; silicon detectors
Abstract Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.
Address [Briz, J. A.; Nerio, A. N.; Ballesteros, C.; Borge, M. J. G.; Martinez, P.; Perea, A.; Tavora, V. G.; Tengblad, O.] Inst Estruct Mat CSIC, Madrid 28006, Spain, Email: jose.briz@csic.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000803113800017 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5245
Permanent link to this record
 

 
Author Millar, W.L. et al; Bañon Caballero, D.
Title High-Power Test of Two Prototype X-Band Accelerating Structures Based on SwissFEL Fabrication Technology Type Journal Article
Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 70 Issue 1 Pages 1-19
Keywords Radio frequency; Life estimation; Temperature measurement; Wires; Electric breakdown; Brazing; Rendering (computer graphics); Acceleration; breakdown; high gradient; linear accelerator cavity (LINAC); radio frequency (RF); test facilities; vacuum arc; X-band
Abstract This article presents the design, construction, and high-power test of two $X$ -band radio frequency (RF) accelerating structures built as part of a collaboration between CERN and the Paul Scherrer Institute (PSI) for the compact linear collider (CLIC) study. The structures are a modified “tuning-free ” variant of an existing CERN design and were assembled using Swiss free electron laser (SwissFEL) production methods. The purpose of the study is two-fold. The first objective is to validate the RF properties and high-power performance of the tuning-free, vacuum brazed PSI technology. The second objective is to study the structures' high-gradient behavior to provide insight into the breakdown and conditioning phenomena as they apply to high-field devices in general. Low-power RF measurements showed that the structure field profiles were close to the design values, and both structures were conditioned to accelerating gradients in excess of 100 MV/m in CERN's high-gradient test facility. Measurements performed during the second structure test suggest that the breakdown rate (BDR) scales strongly with the accelerating gradient, with the best fit being a power law relation with an exponent of 31.14. In both cases, the test results indicate that stable, high-gradient operation is possible with tuning-free, vacuum brazed structures of this kind.
Address [Millar, William L. L.; Grudiev, Alexej; Wuensch, Walter; Lasheras, Nuria Catalan; McMonagle, Gerard; Volpi, Matteo; Paszkiewicz, Jan; Edwards, Amelia; Wegner, Rolf; Bursali, Hikmet; Woolley, Benjamin; Magazinik, Anastasiya; Syratchev, Igor; Vnuchenko, Anna; Pitman, Samantha; del Pozo Romano, Veronica; Caballero, David Banon] CERN, CH-1211 Geneva, Switzerland, Email: lee.millar@cern.ch
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000920658600001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5471
Permanent link to this record