|   | 
Details
   web
Records
Author Pena-Garay, C.; Verde, L.; Jimenez, R.
Title Neutrino footprint in large scale structure Type Journal Article
Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 15 Issue Pages 31-34
Keywords Cosmology; Neutrinos; Large scale structure
Abstract Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.
Address [Verde, Licia; Jimenez, Raul] Univ Barcelona, ICREA, Marti & Franques 1, E-08028 Barcelona, Spain, Email: liciaverde@gmail.com
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000401825700003 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3138
Permanent link to this record
 

 
Author Farzan, Y.; Tortola, M.
Title Neutrino oscillations and non-standard Interactions Type Journal Article
Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 6 Issue Pages 10 - 34pp
Keywords neutrino oscillations; leptonic CP violation; non-standard neutrino interactions; neutrino masses; neutrino physics
Abstract Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of.23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NO.A. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will bemainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass. 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.
Address [Farzan, Yasaman] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran, Email: mariam@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000426198100001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3502
Permanent link to this record
 

 
Author Vinyoles, N.; Serenelli, A.M.; Villante, F.L.; Basu, S.; Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pena-Garay, C.; Song, N.Q.
Title A New Generation of Standard Solar Models Type Journal Article
Year 2017 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 835 Issue 2 Pages 202 - 16pp
Keywords neutrinos; Sun: abundances; Sun: Helioseismology; Sun: interior
Abstract We compute a new generation of standard solar models (SSMs) that includes recent updates on some important nuclear reaction rates and a more consistent treatment of the equation of state. Models also include a novel and flexible treatment of opacity uncertainties based on opacity kernels, required in. light of recent theoretical and experimental works on radiative opacity. Two large sets of SSMs, each based on a different canonical set of solar abundances with high and low metallicity (Z), are computed to determine model uncertainties and correlations among different observables. We present detailed comparisons of high-and low-Z models against different ensembles of solar observables,. including solar neutrinos, surface helium abundance, depth of the. convective envelope, and sound speed profile. A global comparison, including all observables, yields a p-value of 2.7 sigma for the high-Z model and 4.7 sigma for the low-Z one. When the sound speed differences in the narrow region of 0.65 < r/R-circle dot < 0.70 are excluded from the analysis, results are 0.9 sigma and 3.0 sigma for high-and low-Z models respectively. These results show that. high-Z models agree well with solar data but have a systematic problem right below the bottom of the convective envelope linked to steepness of molecular weight and temperature gradients, and that low-Z models lead to a much more general disagreement with solar data. We also show that, while simple parametrizations of opacity uncertainties can strongly alleviate the solar abundance problem, they are insufficient to substantially improve the agreement of SSMs with helioseismic data beyond that obtained for high-Z models due to the intrinsic correlations of theoretical predictions.
Address [Vinyoles, Nuria; Serenelli, Aldo M.] CSIC IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain, Email: vinyoles@ice.csic.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000401145700018 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3145
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 019 - 24pp
Keywords neutrino astronomy; X-ray binaries; X-ray telescopes
Abstract ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit,BP 50568, F-68008 Colmar, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000401806200019 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3147
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I.
Title A full picture of large lepton number asymmetries of the Universe Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 048 - 10pp
Keywords cosmological neutrinos; cosmology of theories beyond the SM; leptogenesis; physics of the early universe
Abstract A large lepton number asymmetry of O(0.1-1) at present Universe might not only be allowed but also necessary for consistency among cosmological data. We show that, if a sizeable lepton number asymmetry were produced before the electroweak phase transition, the requirement for not producing too much baryon number asymmetry through sphalerons processes, forces the high scale lepton number asymmetry to be larger than about 30. Therefore a mild entropy release causing O(10-100) suppression of pre-existing particle density should take place, when the background temperature of the Universe is around T = O(10(-2) -10(2)) GeV for a large but experimentally consistent asymmetry to be present today. We also show that such a mild entropy production can be obtained by the late-time decays of the saxion, constraining the parameters of the Peccei-Quinn sector such as the mass and the vacuum expectation value of the saxion field to be m(phi) greater than or similar to O(10) TeV and phi(0) greater than or similar to O(10(14)) GeV, respectively.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000401806200048 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3148
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for high-energy neutrinos from bright GRBs with ANTARES Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 469 Issue 1 Pages 906-915
Keywords acceleration of particles; neutrinos; gamma-ray burst: individual: GRB 080916C; gamma-ray burst: individual: GRB 110918A; gamma-ray burst: individual: GRB 130427A; gamma-ray burst: individual: GRB 130505A
Abstract Gamma-ray bursts are thought to be sites of hadronic acceleration, thus neutrinos are expected from the decay of charged particles, produced in p gamma interactions. The methods and results of a search for muon neutrinos in the data of the ANTARES neutrino telescope from four bright GRBs (GRB 080916C, GRB 110918A, GRB 130427A and GRB 130505A) observed between 2008 and 2013 are presented. Two scenarios of the fireball model have been investigated: the internal shock scenario, leading to the production of neutrinos with energies mainly above 100 TeV, and the photospheric scenario, characterized by a low-energy component in neutrino spectra due to the assumption of neutrino production closer to the central engine. Since no neutrino events have been detected in temporal and spatial coincidence with these bursts, upper limits at 90 per cent confidence level on the expected neutrino fluxes are derived. The non-detection allows for directly constraining the bulk Lorentz factor of the jet Gamma and the baryon loading f(p).
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: silvia.celli@gssi.infn.it
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000402825000062 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3159
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 769 Issue Pages 249-254
Keywords Dark matter; WIMP; Indirect detection; Neutrino telescope; Galactic Centre; ANTARES
Abstract Using data recorded with the ANTARES telescope from 2007 to 2015, a new search for dark matter annihilation in the Milky Way has been performed. Three halo models and five annihilation channels, WIMP + WIMP -> b (b) over bar, W+W-, tau(+)tau(-), mu(+)mu(-) and v (v) over bar, with WIMP masses ranging from 50 2 GeV/C-2 to 100 Tev/C-2, were considered. No excess over the expected background was found, and limits on the thermally averaged annihilation cross-section were set.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit,BP 50568, F-68008 Colmar, France, Email: ctoennis@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000402342500040 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3160
Permanent link to this record
 

 
Author Garani, R.; Palomares-Ruiz, S.
Title Dark matter in the Sun: scattering off electrons vs nucleons Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 007 - 41pp
Keywords dark matter detectors; dark matter theory; neutrino detectors; stars
Abstract The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic scattering cross section can be constrained. Although the process of DM capture in astrophysical objects like the Sun is commonly assumed to be due to interactions only with nucleons, there are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced interactions with nucleons are allowed, scatterings off electrons could be the dominant capture mechanism. We consider this possibility and study in detail all the ingredients necessary to compute the neutrino production rates from DM annihilationsin the Sun (capture, annihilation and evaporation rates) for velocity-independent and isotropic, velocity-dependent and isotropic and momentum-dependent scattering cross sections for DM interactions with electrons and compare them with the results obtained for the case of interactions with nucleons. Moreover, we improve the usual calculations in a number of ways and provide analytical expressions in three appendices. Interestingly, we find that the evaporation mass in the case of interactions with electrons could be below the GeV range, depending on the high-velocity tail of the DM distribution in the Sun, which would open a new mass window for searching for this type of scenarios.
Address [Garani, Raghuveer] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany, Email: garani@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000402878200007 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3175
Permanent link to this record
 

 
Author Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y.F.
Title Updated global 3+1 analysis of short-baseline neutrino oscillations Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 135 - 38pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We present the results of an updated fit of short-baseline neutrino oscillation data in the framework of 3+1 active-sterile neutrino mixing. We first consider v(e) and (v) over bar (e) disappearance in the light of the Gallium and reactor anomalies. We discuss the implications of the recent measurement of the reactor (v) over bar (e) spectrum in the NEOS experiment, which shifts the allowed regions of the parameter space towards smaller values of |U-e1|(2). The beta-decay constraints of the Mainz and Troitsk experiments allow us to limit the oscillation length between about 2 cm and 7 m at 3 sigma for neutrinos with an energy of 1 MeV. The corresponding oscillations can be discovered in a model-independent way in ongoing reactor and source experiments by measuring v(e) and (v) over bar (e), disappearance as a function of distance. We then consider the global fit of the data on short-baseline v(mu)((-)) -> v(e)((-)) transitions in the light of the LSND anomaly, taking into account the constraints from v(e)(( )) and v(mu)((-)) disappearance experiments, including the recent data of the MINOS and IceCube experiments. The combination of the NEOS constraints on |U-e4|(2) and the MINOS and IceCube constraints on |U-mu 4|(2) lead to an unacceptable appearance-disappearance tension which becomes tolerable only in a pragmatic fit which neglects the MiniBooNE low-energy anomaly. The minimization of the global chi(2) in the space of the four mixing parameters Delta m(41)(2), |U-e4|(2), |U-mu 4|(2) and |U-4 tau|(2) leads to three allowed regions with narrow Delta m(41)(2) widths at Delta m(41)(2) approximate to 1.7 (best-fit), 1.3 (at 2 sigma), 2.4 (at 3 sigma) eV(2). The effective amplitude of short-baseline v(mu)((-)) -> v(e)((-)) oscillations is limited by 0.00048 less than or similar to sin(2) 2 nu(e mu) less than or similar to 0.0020 at 3 sigma The restrictions of the allowed regions of the mixing parameters with respect to our previous global fits are mainly due to the NEOS constraints. We present a comparison of the allowed regions of the mixing parameters with the sensitivities of ongoing experiments, which show that it is likely that these experiments will determine in a definitive way if the reactor, Gallium and LSND anomalies are due to active-sterile neutrino oscillations or not.
Address [Gariazzo, S.] Univ Valencia, CSIC, Inst Fis Corpusc, Valencia, Spain, Email: gariazzo@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000404627200001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3190
Permanent link to this record
 

 
Author Caputo, A.; Hernandez, P.; Lopez-Pavon, J.; Salvado, J.
Title The seesaw portal in testable models of neutrino masses Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 112 - 20pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, d = 5, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two displaced vertices. We estimate the LHC reach to this process.
Address [Caputo, A.; Hernandez, P.; Salvado, J.] Univ Valencia, Inst Fis Corpusc, Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: andrea.caputo@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000404625300005 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 3196
Permanent link to this record