|   | 
Details
   web
Records
Author Bonilla, C.; Herms, J.; Medina, O.; Peinado, E.
Title Discrete dark matter mechanism as the source of neutrino mass scales Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 078 - 23pp
Keywords Flavour Symmetries; Models for Dark Matter; Neutrino Mixing
Abstract The hierarchy in scale between atmospheric and solar neutrino mass splittings is investigated through two distinct neutrino mass mechanisms from tree-level and one-loop-level contributions. We demonstrate that the minimal discrete dark matter mechanism contains the ingredients for explaining this hierarchy. This scenario is characterized by adding new RH neutrinos and SU(2)-doublet scalars to the Standard Model as triplet representations of an A(4) flavor symmetry. The A(4) symmetry breaking, which occurs at the electroweak scale, leads to a residual DOUBLE-STRUCK CAPITAL Z(2) symmetry responsible for the dark matter stability and dictates the neutrino phenomenology. Finally, we show that to reproduce the neutrino mixing angles correctly, it is necessary to violate CP in the scalar potential.
Address [Bonilla, Cesar] Univ Catolica Norte, Dept Fis, Ave Angamos 0610,Casilla 1280, Antofagasta, Chile, Email: cesar.bonilla@ucn.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001007947500002 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5561
Permanent link to this record
 

 
Author Caron, S.; Eckner, C.; Hendriks, L.; Johannesson, G.; Ruiz de Austri, R.; Zaharijas, G.
Title Mind the gap: the discrepancy between simulation and reality drives interpretations of the Galactic Center Excess Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 013 - 56pp
Keywords dark matter simulations; gamma ray experiments; Machine learning; millisecond pulsars
Abstract The Galactic Center Excess (GCE) in GeV gamma rays has been debated for over a decade, with the possibility that it might be due to dark matter annihilation or undetected point sources such as millisecond pulsars (MSPs). This study investigates how the gamma-ray emission model (-yEM) used in Galactic center analyses affects the interpretation of the GCE's nature. To address this issue, we construct an ultra-fast and powerful inference pipeline based on convolutional Deep Ensemble Networks. We explore the two main competing hypotheses for the GCE using a set of-yEMs with increasing parametric freedom. We calculate the fractional contribution (fsrc) of a dim population of MSPs to the total luminosity of the GCE and analyze its dependence on the complexity of the ryEM. For the simplest ryEM, we obtain fsrc = 0.10 f 0.07, while the most complex model yields fsrc = 0.79 f 0.24. In conclusion, we find that the statement about the nature of the GCE (dark matter or not) strongly depends on the assumed ryEM. The quoted results for fsrc do not account for the additional uncertainty arising from the fact that the observed gamma-ray sky is out-of-distribution concerning the investigated ryEM iterations. We quantify the reality gap between our ryEMs using deep-learning-based One-Class Deep Support Vector Data Description networks, revealing that all employed ryEMs have gaps to reality. Our study casts doubt on the validity of previous conclusions regarding the GCE and dark matter, and underscores the urgent need to account for the reality gap and consider previously overlooked “out of domain” uncertainties in future interpretations.
Address [Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Theoret High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025516000009 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5576
Permanent link to this record
 

 
Author Capozzi, F.; Ferreira, R.Z.; Lopez-Honorez, L.; Mena, O.
Title CMB and Lyman-alpha constraints on dark matter decays to photons Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 060 - 23pp
Keywords reionization; axions; cosmological parameters from CMBR; dark matter theory
Abstract Dark matter energy injection in the early universe modifies both the ionization history and the temperature of the intergalactic medium. In this work, we improve the CMB bounds on sub-keV dark matter and extend previous bounds from Lyman-& alpha; observations to the same mass range, resulting in new and competitive constraints on axion-like particles (ALPs) decaying into two photons. The limits depend on the underlying reionization history, here accounted self-consistently by our modified version of the publicly available DarkHistory and CLASS codes. Future measurements such as the ones from the CMB-S4 experiment may play a crucial, leading role in the search for this type of light dark matter candidates.
Address [Capozzi, Francesco] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy, Email: francesco.capozzi@univaq.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025410500001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5584
Permanent link to this record
 

 
Author Belchior, F.M.; Moreira, A.R.P.; Maluf, R.V.; Almeida, C.A.S.
Title 5D Elko spinor field non-minimally coupled to nonmetricity in f (Q) gravity Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 843 Issue Pages 138029 - 8pp
Keywords Elko field; Dark matter; Thick brane; Symmetric teleparallel gravity
Abstract This paper aims to investigate the localization of the five-dimensional spinor field known as Elko (dual-helicity eigenspinors of the charge conjugation operator) by employing a Yukawa-like geometrical coupling in which the Elko field is non-minimally coupled to nonmetricity scalar Q. We adopt the braneworld scenarios in which the first-order formalism with sine-Gordon and linear superpotentials is employed to obtain the warp factors. A linear function supports the zero-mode trapping within the geometric coupling, leading to the same effective potential as the scalar field. Moreover, an exotic term must be added to obtain real-valued massive modes. Such modes are investigated through the Schrodinger-like approach.
Address [Belchior, F. M.; Moreira, A. R. P.; Maluf, R. V.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pico,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001039072300001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5594
Permanent link to this record
 

 
Author Portillo-Sanchez, D.; Escribano, P.; Vicente, A.
Title Ultraviolet extensions of the Scotogenic model Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 023 - 35pp
Keywords Baryon; Lepton Number Violation; Specific BSM Phenomenology; New Light Particles; Particle Nature of Dark Matter
Abstract The Scotogenic model is a popular scenario that induces radiative Majorana neutrino masses and includes a weakly-interacting dark matter candidate. We classify all possible ultraviolet extensions of the Scotogenic model in which (i) the dark DOUBLE-STRUCK CAPITAL Z(2) parity emerges at low energies after the spontaneous breaking of a global U(1)(L) lepton number symmetry, and (ii) the low-energy effective theory contains a naturally small lepton number breaking parameter, suppressed by the mass of a heavy mediator integrated out at tree-level. We find 50 such models and discuss two of them in detail to illustrate our setup. We also discuss some general aspects of the phenomenology of the models in our classification, exploring possible lepton flavor violating signals, collider signatures and implications for dark matter. The phenomenological prospects of these scenarios are very rich due to the presence of additional scalar states, including a massless Goldstone boson.
Address [Portillo-Sanchez, Diego] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City E-07360, Mexico, Email: pablo.escribano@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001044764300006 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5614
Permanent link to this record