toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Born-Infeld inspired modifications of gravity Type Journal Article
  Year 2018 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 727 Issue Pages 1-129  
  Keywords Born-Infeld gravity; Astrophysics; Black holes; Cosmology; Early universe; Compact objects; Singularities  
  Abstract General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.  
  Address [Beltran Jimenez, Jose] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: jose.beltran@uam.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000425482900001 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 3497  
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title New scalar compact objects in Ricci-based gravity theories Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 044 - 20pp  
  Keywords modified gravity; gravity; GR black holes; Wormholes  
  Abstract Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers.  
  Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000507261900041 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 4252  
Permanent link to this record
 

 
Author Creminelli, P.; Loayza, N.; Serra, F.; Trincherini, E.; Trombetta, L.G. url  doi
openurl 
  Title Hairy black-holes in shift-symmetric theories Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 045 - 24pp  
  Keywords Black Holes; Classical Theories of Gravity  
  Abstract Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J(2) diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J(2) is not a scalar quantity, since J(mu) is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G(5)similar to log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.  
  Address [Creminelli, Paolo] Abdus Salaam Int Ctr Theoret Phys, Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy, Email: creminel@ictp.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000562728200001 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 4515  
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Rotating black holes in Eddington-inspired Born-Infeld gravity: an exact solution Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 058 - 31pp  
  Keywords modified gravity; GR black holes; Wormholes  
  Abstract We find an exact, rotating charged black hole solution within Eddington-inspired Born-Infeld gravity. To this end we employ a recently developed correspondence or mapping between modified gravity models built as scalars out of contractions of the metric with the Ricci tensor, and formulated in metric-affine spaces (Ricci-Based Gravity theories) and General Relativity. This way, starting from the Kerr-Newman solution, we show that this mapping bring us the axisymmetric solutions of Eddington-inspired Born-Infeld gravity coupled to a certain model of non-linear electrodynamics. We discuss the most relevant physical features of the solutions obtained this way, both in the spherically symmetric limit and in the fully rotating regime. Moreover, we further elaborate on the potential impact of this important technical progress for bringing closer the predictions of modified gravity with the astrophysical observations of compact objects and gravitational wave astronomy.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609085900005 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 4682  
Permanent link to this record
 

 
Author Foffa, S.; Sturani, R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title Efficient resummation of high post-Newtonian contributions to the binding energy Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 165 - 18pp  
  Keywords Classical Theories of Gravity; Black Holes; Effective Field Theories  
  Abstract A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more “efficient” observables like the scattering angle, thus making the EFT approach in harmonic gauge at least as scalable as the others methods.  
  Address [Foffa, Stefano] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland, Email: stefano.foffa@unige.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621231300003 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 4740  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva