|   | 
Details
   web
Records
Author Fujita, Y.; Rubio, B.; Gelletly, W.
Title Spin-isospin excitations probed by strong, weak and electro-magnetic interactions Type Journal Article
Year 2011 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 66 Issue 3 Pages 549-606
Keywords Gamow-Teller transitions; beta decay; Charge-exchange reactions; Isospin symmetry; High resolution; Proton-rich nuclei
Abstract Gamow-Teller (GT) transitions are the most common weak interaction processes of spin-isospin (sigma tau) type in atomic nuclei. They are of interest not only in nuclear physics but also in astrophysics; they play an important role in supernovae explosions and nucleosynthesis. The direct study of weak decay processes, however, gives relatively limited information about GT transitions and the states excited via GT transitions (GT states); beta decay can only access states at excitation energies lower than the decay Q-value, and neutrino-induced reactions have very small cross-sections. However, one should note that beta decay has a direct access to the absolute GT transition strengths B(GT) from a study of half-lives, Q(beta)-values and branching ratios. They also provide information on GT transitions in nuclei far-from-stability. Studies of M1 gamma transitions provide similar information. In contrast, the complementary charge-exchange (CE) reactions, such as the (p, n) or ((3)He, t) reactions at intermediate beam energies and 0 degrees, can selectively excite GT states up to high excitation energies in the final nucleus. It has been found empirically that there is a close proportionality between the cross-sections at 0 degrees and the transition strengths B(GT) in these CE reactions. Therefore, CE reactions are useful tools to study the relative values of B(GT) strengths up to high excitation energies. In recent ((3)He, t) measurements, one order-of-magnitude improvement in the energy resolution has been achieved. This has made it possible to make one-to-one comparisons of GT transitions studied in CE reactions and beta decays. Thus GT strengths in ((3)He, t) reactions can be normalised by the beta-decay values. In addition, comparisons with closely related M1 transitions studied in gamma decay or electron inelastic scattering [(e, e')1, and furthermore with “spin” M I transitions that can be studied by proton inelastic scattering [(p, p')[ have now been made possible. In these comparisons, the isospin quantum number T and associated symmetry structure in the same mass A nuclei (isobars) play a key role. Isospin symmetry can extend our scope even to the structures of unstable nuclei that are far from reach at present unstable beam factories.
Address [Fujita, Y] Osaka Univ, Dept Phys, Osaka 5600043, Japan, Email: fujita@rcnp.osaka-u.ac.jp
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000292473100003 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 692
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 022 - 17pp
Keywords ultra high energy cosmic rays; cosmic ray experiments
Abstract The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E-th = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > E-th are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above E-th/Z (for illustrative values of Z = 6, 13, 26). If the anisotropies above E-th are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal, Email: auger_spokepersons@fnal.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000292332400022 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ elepoucu @ Serial 676
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R.; Trotta, R.
Title Quantifying the tension between the Higgs mass and (g-2)(mu) in the constrained MSSM Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 1 Pages 015006 - 7pp
Keywords
Abstract Supersymmetry has often been invoked as the new physics that might reconcile the experimental muon magnetic anomaly, a(mu), with the theoretical prediction (basing the computation of the hadronic contribution on e(+)e(-) data). However, in the context of the constrained minimal supersymmetric standard model (CMSSM), the required supersymmetric contributions (which grow with decreasing supersymmetric masses) are in potential tension with a possibly large Higgs mass (which requires large stop masses). In the limit of very large m(h) supersymmetry gets decoupled, and the CMSSM must show the same discrepancy as the standard model with a(mu). But it is much less clear for which size of m(h) does the tension start to be unbearable. In this paper, we quantify this tension with the help of Bayesian techniques. We find that for m(h) >= 125 GeV the maximum level of discrepancy given the current data (similar to 3.2 sigma) is already achieved. Requiring less than 3 sigma discrepancy, implies m(h) less than or similar to 120 GeV. For a larger Higgs mass we should give up either the CMSSM model or the computation of a(mu) based on e(+)e(-); or accept living with such an inconsistency.
Address [Cabrera, ME; Casas, JA] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: maria.cabrera@uam.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000292547200003 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 680
Permanent link to this record
 

 
Author De Bernardis, F.; Martinelli, M.; Melchiorri, A.; Mena, O.; Cooray, A.
Title Future weak lensing constraints in a dark coupled universe Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 2 Pages 023504 - 10pp
Keywords
Abstract Probing the dark matter clustering and its evolution with weak lensing surveys constitutes a unique tool to constrain interacting dark energy models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the expected results from the ongoing Planck cosmic microwave background satellite experiment. We find that these future data could constrain the dimensionless coupling between dark matter and dark energy to be smaller than a few x 10(-2), improving the CMB-only constraint by at least 2 orders of magnitude. We also show that coupled cosmologies can substantially alter the constraints on cosmological parameters obtained from CMB experiments under the assumption of noninteracting cosmologies unless weak lensing data is considered.
Address [De Bernardis, F; Cooray, A] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000292515000001 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 681
Permanent link to this record
 

 
Author Forero, D.V.; Guzzo, M.M.
Title Constraining nonstandard neutrino interactions with electrons Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 1 Pages 013002 - 7pp
Keywords
Abstract We update the phenomenological constraints of the nonstandard neutrino interactions (NSNI) with electrons including in the analysis, for the first time, data from LAMPF, Krasnoyarsk, and the latest Texono observations. We assume that NSNI modify the cross section of elastic scattering of (anti) neutrinos off electrons, using reactor and accelerator data, and the cross section of the electron-positron annihilation, using the four LEP experiments, in particular, new data from DELPHI. We find more restrictive allowed regions for the NSNI parameters: -0.11< epsilon(eR)(ee) < 0.05 and -0.02 < epsilon(eL)(ee) < 0.09 (90% C.L.). We also recalculate the parameters of tauonic flavor obtaining -0.35 < epsilon(eR)(tau tau) < 0.50 and -0.51 < epsilon(eL)(tau tau) < 0.34 (90% C.L.). Although more severe than the limits already present in the literature, our results indicate that NSNI are allowed by the present data as a subleading effect, and the standard electroweak model continues consistent with the experimental panorama at 90% C.L. Further improvement on this picture will deserve a lot of engagement of upcoming experiments.
Address [Forero, DV] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000292388800003 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 682
Permanent link to this record