|   | 
Details
   web
Records
Author Scandale, W. et al; Lari, L.
Title Observation of nuclear dechanneling length reduction for high energy protons in a short bent crystal Type Journal Article
Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 743 Issue Pages 440-443
Keywords Crystal; Channeling; Beam; Deflection
Abstract Deflection of 400 GeV/c protons by a short bent silicon crystal was studied at the CERN SPS. It was shown that the dechanneling probability increases while the dechanneling length decreases with an increase of incident angles of particles relative to the crystal planes. The observation of the dechanneling length reduction provides evidence of the particle population increase at the top levels of transverse energies in the potential well of the planar channels. (C) 2015 The Authors. Published by Elsevier B.V.
Address [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland, Email: alexander.taratin@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000352147500065 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 2201
Permanent link to this record
 

 
Author Torres-Espallardo, I.; Diblen, F.; Rohling, H.; Solevi, P.; Gillam, J.; Watts, D.; Espana, S.; Vandenberghe, S.; Fiedler, F.; Rafecas, M.
Title Evaluation of resistive-plate-chamber-based TOF-PET applied to in-beam particle therapy monitoring Type Journal Article
Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 60 Issue 9 Pages N187-N208
Keywords PET; in-beam; RPC; particle therapy; TOF; range deviation; partial-ring
Abstract Particle therapy is a highly conformal radiotherapy technique which reduces the dose deposited to the surrounding normal tissues. In order to fully exploit its advantages, treatment monitoring is necessary to minimize uncertainties related to the dose delivery. Up to now, the only clinically feasible technique for the monitoring of therapeutic irradiation with particle beams is Positron Emission Tomography (PET). In this work we have compared a Resistive Plate Chamber (RPC)-based PET scanner with a scintillation-crystal-based PET scanner for this application. In general, the main advantages of the RPC-PET system are its excellent timing resolution, low cost, and the possibility of building large area systems. We simulated a partial-ring scannerbeam monitoring, which has an intrinsically low positron yield compared to diagnostic PET. In addition, for in-beam PET there is a further data loss due to the partial ring configuration. In order to improve the performance of the RPC-based scanner, an improved version of the RPC detector (modifying the thickness of the gas and glass layers), providing a larger sensitivity, has been simulated and compared with an axially extended version of the crystal-based device. The improved version of the RPC shows better performance than the prototype, but the extended version of the crystal-based PET outperforms all other options. based on an RPC prototype under construction within the Fondazione per Adroterapia Oncologica (TERA). For comparison with the crystal-based PET scanner we have chosen the geometry of a commercially available PET scanner, the Philips Gemini TF. The coincidence time resolution used in the simulations takes into account the current achievable values as well as expected improvements of both technologies. Several scenarios (including patient data) have been simulated to evaluate the performance of different scanners. Initial results have shown that the low sensitivity of the RPC hampers its application to hadron
Address [Torres-Espallardo, I.; Solevi, P.; Gillam, J.; Rafecas, M.] UV, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: irene.torres@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000354104700003 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 2227
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T.
Title Digital Front-End Electronics for the Neutron Detector NEDA Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 3 Pages 1063-1069
Keywords Digital systems; front-end electronics; neutron detectors; neutron-gamma discrimination
Abstract This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.
Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000356458000029 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 2279
Permanent link to this record
 

 
Author NEXT Collaboration (Cebrian, S. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P05006 - 16pp
Keywords Radiation calculations; Time projection Chambers (TPC); Double-beta decay detectors; Particle tracking detectors (Gaseous detectors)
Abstract The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection process is underway to control the radiopurity levels of the materials to be used in the experimental set-up of NEXT. The detector design combines the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. Separate energy and tracking readout planes are based on different sensors: photomultiplier tubes for calorimetry and silicon multi-pixel photon counters for tracking. The design of a radiopure tracking plane, in direct contact with the gas detector medium, was specially challenging since the needed components like printed circuit boards, connectors, sensors or capacitors have typically, according to available information in databases and in the literature, activities too large for experiments requiring ultra-low background conditions. Here, the radiopurity assessment of tracking readout components based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) is described. According to the obtained results, radiopure enough printed circuit boards made of kapton and copper, silicon photomultipliers and other required components, fulfilling the requirement of an overall background level in the region of interest of at most 8 x 10(-4) counts keV(-1) kg(-1) y(-1), have been identified.
Address [Cebrian, S.; Dafni, T.; Gonzalez-Diaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Ortiz de Solorzano, A.; Villar, J. A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain, Email: scebrian@unizar.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000357993300038 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 2305
Permanent link to this record
 

 
Author NEXT Collaboration (Serra, L. et al); Sorel, M.; Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.
Title An improved measurement of electron-ion recombination in high-pressure xenon gas Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P03025 - 21pp
Keywords Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Time projection chambers; Ionization and excitation processes
Abstract We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), filled with pure xenon gas at 10 bar pressure and exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electronion recombination in the gas, with correlation coefficients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0.561 +/- 0.045, translating into an average energy to produce a primary scintillation photon of W-ex = (39.2 +/- 3.2) eV.
Address [Serra, L.; Sorel, M.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: luis.serra@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000357944500075 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 2307
Permanent link to this record