|   | 
Details
   web
Records
Author Navarro, P.; Gimeno, B.; Alvarez Melcon, A.; Arguedas Cuendis, S.; Cogollos, C.; Diaz-Morcillo, A.; Gallego, J.D.; Garcia Barcelo, J.M.; Golm, J.; Irastorza, I.G.; Lozano Guerrero, A.J.; Garay, C.P.
Title Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators Type Journal Article
Year 2022 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 36 Issue Pages 101001 - 14pp
Keywords Axion detection; Axion field; Axion-photon interaction; BI-RME 3D; Broad-band analysis; Dark matter; Full wave analysis; Haloscope; Microwave resonator; Modal technique
Abstract The electromagnetic coupling axion-photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion-photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green's functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy-Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.
Address [Navarro, P.; Melcon, A. alvarez; Diaz-Morcillo, A.; Barcelo, J. M. Garcia; Guerrero, A. J. Lozano] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: pablonm.ct.94@gmail.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000791333100001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5218
Permanent link to this record
 

 
Author Figueroa, D.G.; Raatikainen, S.; Rasanen, S.; Tomberg, E.
Title Implications of stochastic effects for primordial black hole production in ultra-slow-roll inflation Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 027 - 48pp
Keywords inflation; primordial black holes; dark matter theory; massive black holes
Abstract We study the impact of stochastic noise on the generation of primordial black hole (PBH) seeds in ultra-slow-roll (USR) inflation with numerical simulations. We consider the non-linearity of the system by consistently taking into account the noise dependence on the inflaton perturbations, while evolving the perturbations on the coarse-grained background affected by the noise. We capture in this way the non-Markovian nature of the dynamics, and demonstrate that non-Markovian effects are subleading. Using the Delta N formalism, we find the probability distribution P(R) of the comoving curvature perturbation R. We consider inflationary potentials that fit the CMB and lead to PBH dark matter with i) asteroid, ii) solar, or iii) Planck mass, as well as iv) PBHs that form the seeds of supermassive black holes. We find that stochastic effects enhance the PBH abundance by a factor of O(10)-O(10(8)), depending on the PBH mass. We also show that the usual approximation, where stochastic kicks depend only on the Hubble rate, either underestimates or overestimates the abundance by orders of magnitude, depending on the potential. We evaluate the gauge dependence of the results, discuss the quantum-to-classical transition, and highlight open issues of the application of the stochastic formalism to USR inflation.
Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueoa@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804493000010 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5239
Permanent link to this record
 

 
Author Garani, R.; Palomares-Ruiz, S.
Title Evaporation of dark matter from celestial bodies Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 042 - 53pp
Keywords dark matter detectors; dark matter theory; massive stars; stars
Abstract Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that DM particles must have in order to remain trapped. DM particles below this mass are very likely to scatter to speeds higher than the escape velocity, so they would be kicked out of the capturing object and escape. Here, we compute the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium, spanning the mass range [10(-)(10) – 10(2)] M-circle dot, for constant scattering cross sections and s-wave annihilations. We illustrate the critical importance of the exponential tail of the evaporation rate, which has not always been appreciated in recent literature, and obtain a robust result: for the geometric value of the scattering cross section and for interactions with nucleons, at the local galactic position, the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium is approximately given by E-c/T-chi similar to 30, where E-c is the escape energy of DM particles at the core of the object and T-chi is their temperature. In that case, the minimum value of the DM evaporation mass is obtained for super-Jupiters and brown dwarfs, m(ev)(ap) similar or equal to 0.7 GeV. For other values of the scattering cross section, the DM evaporation mass only varies by a factor smaller than three within the range 10(-41) cm(2) <= sigma(p) <= 10(-31) cm(2), where sigma(p) is the spin-independent DM-nucleon scattering cross section. Its dependence on parameters such as the galactic DM density and velocity, or the scattering and annihilation cross sections is only logarithmic, and details on the density and temperature profiles of celestial bodies have also a small impact.
Address [Garani, Raghuveer] INFN Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804029400004 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5243
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Search for secluded dark matter towards the Galactic Centre with the ANTARES neutrino telescope Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 028 - 20pp
Keywords dark matter experiments; neutrino experiments; ultra high energy photons and neutrinos
Abstract Searches for dark matter (DM) have not provided any solid evidence for the existence of weakly interacting massive particles in the GeV-TeV mass range. Coincidentally, the scale of new physics is being pushed by collider searches well beyond the TeV domain. This situation strongly motivates the exploration of DM masses much larger than a TeV. Secluded scenarios contain a natural way around the unitarity bound on the DM mass, via the early matter domination induced by the mediator of its interactions with the Standard Model. High-energy neutrinos constitute one of the very few direct accesses to energy scales above a few TeV. An indirect search for secluded DM signals has been performed with the ANTARES neutrino telescope using data from 2007 to 2015. Upper limits on the DM annihilation cross section for DM masses up to 6 PeV are presented and discussed.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000823148400006 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5284
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Search for solar atmospheric neutrinos with the ANTARES neutrino telescope Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 018 - 17pp
Keywords neutrino detectors; neutrino experiments; solar and atmospheric neutrinos; dark matter experiments
Abstract Solar Atmospheric Neutrinos (SA nu s) are produced by the interaction of cosmic rays with the solar medium. The detection of SA nu s would provide useful information on the composition of primary cosmic rays as well as the solar density. These neutrinos represent an irreducible source of background for indirect searches for dark matter towards the Sun and the measurement of their flux would allow for a better assessment of the uncertainties related to these searches. In this paper we report on the analysis performed, based on an unbinned likelihood maximisation, to search for SA nu s with the ANTARES neutrino telescope. After analysing the data collected over 11 years, no evidence for a solar atmospheric neutrino signal has been found. An upper limit at 90% confidence level on the flux of solar atmospheric neutrinos has been obtained, equal to 7x10(-11) [TeV-1 cm(-2) s(-1)] b at E-nu = 1 TeV for the reference cosmic ray model assumed.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000833413700001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5319
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Helo, J.C.; Hirsch, M.; Kovalenko, S.
Title How many 1-loop neutrino mass models are there? Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 023 - 29pp
Keywords Other Weak Scale BSM Models; Models for Dark Matter; Neutrino Interactions
Abstract It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000835685500003 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5320
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.; Titov, A.
Title Sterile neutrino portals to Majorana dark matter: effective operators and UV completions Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 085 - 36pp
Keywords Models for Dark Matter; Particle Nature of Dark Matter; Sterile or Heavy Neutrinos; Baryon/Lepton Number Violation
Abstract Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.
Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000836782300004 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5340
Permanent link to this record
 

 
Author Gola, S.; Mandal, S.; Sinha, N.
Title ALP-portal majorana dark matter Type Journal Article
Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 37 Issue Pages 2250131 - 14pp
Keywords Axion like particle; heavy neutrinos; dark matter
Abstract Axion like particles (ALPs) and right-handed neutrinos (RHNs) are two well-motivated dark matter (DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM (Majorana DM) taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and Standard Model (SM) particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.
Address [Gola, Shivam; Sinha, Nita] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India, Email: shivamg@imsc.res.in;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000854297000001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5359
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Medina, O.
Title Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 080 - 23pp
Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter
Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.
Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000867661300002 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5387
Permanent link to this record
 

 
Author Martinelli, M.; Scarcella, F.; Hogg, N.B.; Kavanagh, B.J.; Gaggero, D.; Fleury, P.
Title Dancing in the dark: detecting a population of distant primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 006 - 47pp
Keywords dark matter theory; gravitational waves / experiments; gravitational waves / sources; primordial black holes
Abstract Primordial black holes (PBHs) are compact objects proposed to have formed in the early Universe from the collapse of small-scale over-densities. Their existence may be detected from the observation of gravitational waves (GWs) emitted by PBH mergers, if the signals can be distinguished from those produced by the merging of astrophysical black holes. In this work, we forecast the capability of the Einstein Telescope, a proposed third-generation GW observatory, to identify and measure the abundance of a subdominant population of distant PBHs, using the difference in the redshift evolution of the merger rate of the two populations as our discriminant. We carefully model the merger rates and generate realistic mock catalogues of the luminosity distances and errors that would be obtained from GW signals observed by the Einstein Telescope. We use two independent statistical methods to analyse the mock data, finding that, with our more powerful, likelihood-based method, PBH abundances as small as fPBH approximate to 7 x 10(-6) ( fPBH approximate to 2 x 10(-6)) would be distinguishable from f(PBH) = 0 at the level of 3 sigma with a one year (ten year) observing run of the Einstein Telescope. Our mock data generation code, darksirens, is fast, easily extendable and publicly available on GitLab.
Address [Martinelli, Matteo] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy, Email: matteo.martinelli@inaf.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000911612900001 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 5461
Permanent link to this record