toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Otal, A.; Celada, F.; Chimeno, J.; Vijande, J.; Pellejero, S.; Perez-Calatayud, M.J.; Villafranca, E.; Fuentemilla, N.; Blazquez, F.; Rodriguez, S.; Perez-Calatayud, J. doi  openurl
  Title Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives Type Journal Article
  Year 2022 Publication Cancers Abbreviated Journal Cancers  
  Volume 14 Issue 14 Pages 3467 - 15pp  
  Keywords cervix; treatment planning systems; interstitial applicators; magnetic resonance  
  Abstract Simple Summary There are no brachytherapy treatment planning systems (TPS) exclusively for the treatment of cervical tumours, so general-purpose TPSs are used. However, these treatments have some particular features concerning the treatment of other pathologies, especially in the case of exclusive use of MRI as an imaging modality and the presence of gynaecological applicators in combination with an interstitial part. That is why it is essential to review the latest versions of commercial TPSs to find the potential features to improve with the help of a group of experimented medical physicists and radiation oncologists. Furthermore, after reviewing the recent literature for advances applicable to cervical brachytherapy and through his own clinical experience, possible improvements are proposed to software providers for the development of new tools. Intracavitary brachytherapy (BT, Interventional Radiotherapy, IRT), plays an essential role in the curative intent of locally advanced cervical cancer, for which the conventional approach involves external beam radiotherapy with concurrent chemotherapy followed by BT. This work aims to review the different methodologies used by commercially available treatment planning systems (TPSs) in exclusive magnetic resonance imaging-based (MRI) cervix BT with interstitial component treatments. Practical aspects and improvements to be implemented into the TPSs are discussed. This review is based on the clinical expertise of a group of radiation oncologists and medical physicists and on interactive demos provided by the software manufacturers. The TPS versions considered include all the new tools currently in development for future commercial releases. The specialists from the supplier companies were asked to propose solutions to some of the challenges often encountered in a clinical environment through a questionnaire. The results include not only such answers but also comments by the authors that, in their opinion, could help solve the challenges covered in these questions. This study summarizes the possibilities offered nowadays by commercial TPSs, highlighting the absence of some useful tools that would notably improve the planning of MR-based interstitial component cervix brachytherapy.  
  Address [Otal, Antonio] Hosp Arnau Vilanova, Med Phys Dept, Lleida 25198, Spain, Email: aotalpalacin@gmail.com;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000832057600001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5304  
Permanent link to this record
 

 
Author De Romeri, V.; Puerta, M.; Vicente, A. url  doi
openurl 
  Title Dark matter in a charged variant of the Scotogenic model Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 7 Pages 623 - 16pp  
  Keywords  
  Abstract Scotogenic models are among the most popular possibilities to link dark matter and neutrino masses. In this work we discuss a variant of the Scotogenic model that includes charged fermions and a doublet with hypercharge 3/2. Neutrino masses are induced at the one-loop level thanks to the states belonging to the dark sector. However, in contrast to the standard Scotogenic model, only the scalar dark matter candidate is viable in this version. After presenting the model and explaining some particularities about neutrino mass generation, we concentrate on its dark matter phenomenology. We show that the observed dark matter relic density can be correctly reproduced in the usual parameter space regions found for the standard Scotogenic model or the Inert Doublet model. In addition, the presence of the charged fermions opens up new viable regions, not present in the original scenarios, provided some tuning of the parameters is allowed.  
  Address [De Romeri, Valentina; Puerta, Miguel; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000826946000002 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5311  
Permanent link to this record
 

 
Author Hueso-Gonzalez, F.; Casaña Copado, J.V.; Fernandez Prieto, A.; Gallas Torreira, A.; Lemos Cid, E.; Ros Garcia, A.; Vazquez Regueiro, P.; Llosa, G. doi  openurl
  Title A dead-time-free data acquisition system for prompt gamma-ray measurements during proton therapy treatments Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1033 Issue Pages 166701 - 9pp  
  Keywords Data acquisition; Dead time; Pile-up; Digital signal processing  
  Abstract In cancer patients undergoing proton therapy, a very intense secondary radiation is produced during the treatment, which lasts around one minute. About one billion prompt gamma-rays are emitted per second, and their detection with fast scintillation detectors is useful for monitoring a correct beam delivery. To cope with the expected count rate and pile-up, as well as the scarce statistics due to the short treatment duration, we developed an eidetic data acquisition system capable of continuously digitizing the detector signal with a high sampling rate and without any dead time. By streaming the fully unprocessed waveforms to the computer, complex pile-up decomposition algorithms can be applied and optimized offline. We describe the data acquisition architecture and the multiple experimental tests designed to verify the sustained data throughput speed and the absence of dead time. While the system is tailored for the proton therapy environment, the methodology can be deployed in any other field requiring the recording of raw waveforms at high sampling rates with zero dead time.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000794040600002 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5318  
Permanent link to this record
 

 
Author Coloma, P.; Hernandez, P.; Urrea, S. url  doi
openurl 
  Title New bounds on axion-like particles from MicroBooNE Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 025 - 25pp  
  Keywords Axions and ALPs; Kaons  
  Abstract Neutrino experiments lie at the edge of the intensity frontier and therefore can be exploited to search for new light particles weakly coupled to the visible sector. In this work we derive new constraints on axion-like particles (ALPs) using data from the MicroBooNE experiment, from a search for e(+)e(-) pairs pointing in the direction of the NuMI absorber. In particular, we consider the addition of higher-dimensional effective operators coupling the ALP to the electroweak gauge bosons. These would induce K -> pi a from kaon decay at rest in the NuMI absorber, as well as ALP decays into pairs of leptons or photons. We discuss in detail and compare various results obtained for the decay width K -> pi a in previous literature. For the operator involving the Higgs, MicroBooNE already sets competitive bounds (comparable to those of NA62) for ALP masses between 100 and 200 MeV. We also compute the expected sensitivities from the full NuMI dataset recorded at MicroBooNE. Our results show that a search for a -> gamma gamma signal may be able to improve over current constraints from beam-dump experiments on the operator involving the ALP coupling to the W.  
  Address [Coloma, Pilar] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Calle Nicolas Cabrera 1315, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000836240700003 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5323  
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J. url  doi
openurl 
  Title Compositeness of S-wave weakly-bound states from next-to-leading order Weinberg's relations Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 8 Pages 724 - 12pp  
  Keywords  
  Abstract We discuss a model-independent estimator of the likelihood of the compositeness of a shallow S-wave bound or virtual state. The approach is based on an extension of Weinberg's relations in Weinberg (Phys Rev 137:B672, 1965) and it relies only on the proximity of the energy of the state to the two-hadron threshold to which it significantly couples. The scheme only makes use of the experimental scattering length and the effective range low energy parameters, and it is shown to be fully consistent for predominantly molecular hadrons. As explicit applications, we analyse the case of the deuteron, the S-1(0) nucleon virtual state and the exotic D-so(*)(2317)(+/-) , and find strong support to the molecular interpretation in all cases. Results are less conclusive for the D* (s0)(2317)+/-, since the binding energy of this state would be significantly higher than that of the deuteron, and the approach employed here is at the limit of its applicability. We also qualitatively address the case of the recently discovered T + cc state, within the isospin limit to avoid the complexity of the very close thresholds (DD)-D-0*+ and D + D*(0), which could mask the ingredients of the approach proposed in this work.  
  Address [Albaladejo, M.; Nieves, J.] Inst Invest Paterna, Inst Fis Corpuscular, Ctr Mixto CSIC UV, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: Miguel.Albaladejo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000842040900001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 5337  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva