toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author AGATA collaboration (Collado, J. et al); Civera, J.V.; Gadea, A. doi  openurl
  Title AGATA phase 2 advancements in front-end electronics Type Journal Article
  Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 59 Issue 6 Pages 133 - 20pp  
  Keywords  
  Abstract The AGATA collaboration has a long-standing leadership in the development of front-end electronics for high resolution ?-ray spectroscopy using large volume high purity germanium detectors. For two decades, the AGATA collaboration has been developing state-of-the-art digital electronics processing with high resolution sampling ADC, high-speed signal transfer and fast readout to a high throughput computing (HTC) farm for on-line pulse shape analysis. The collaboration is presently addressing the next challenge of equipping a 4p array with more than 6000 channels in high resolution mode, generating approximately 10 MHz of total trigger requests, coupled to a large variety of complementary instruments. A next generation of front-end electronics, presently under design, is based on industrial products (System on Module FPGA's), has higher integration and lower power consumption. In this contribution, the conceptual design of the new electronics is presented. The results of the very first tests of the pre-production electronics are presented as well as future perspectives.  
  Address [Collado, J.; Gonzalez, V.] Univ Valencia, Dept Ingn Elect, Valencia 46100, Spain, Email: gadea@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001015065300001 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 5567  
Permanent link to this record
 

 
Author Azevedo, C.D.R.; Baeza, A.; Chauveau, E.; Corbacho, J.A.; Diaz, J.; Domange, J.; Marquet, C.; Martinez-Roig, M.; Piquemal, F.; Roldan, C.; Vasco, J.; Veloso, J.F.C.A.; Yahlali, N. doi  openurl
  Title Design, setup and routine operation of a water treatment system for the monitoring of low activities of tritium in water Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal Nucl. Eng. Technol.  
  Volume 55 Issue 7 Pages 2349-2355  
  Keywords Monitoring radioactive discharges; Remote management; Tritium; Small size water treatment plant  
  Abstract In the TRITIUM project, an on-site monitoring system is being developed to measure tritium (3H) levels in water near nuclear power plants. The quite low-energy betas emitted by 3H have a very short average path in water (5 mm as shown by simulations for 18 keV electrons). This path would be further reduced by impurities present in the water, resulting in a significant reduction of the detection efficiency. Therefore, one of the essential requirements of the project is the elimination of these impurities through a filtration process and the removal of salts in solution. This paper describes a water treatment system developed for the project that meets the following requirements: the water produced should be of nearpure water quality according to ISO 3696 grade 3 standard (conductivity < 10 mS/cm); the system should operate autonomously and be remotely monitored.  
  Address [Azevedo, C. D. R.; Veloso, J. F. C. A.] Univ Aveiro, Dept Fis I3N, Aveiro, Portugal, Email: corbamer@unex.es  
  Corporate Author Thesis  
  Publisher Korean Nuclear Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001015455100001 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 5569  
Permanent link to this record
 

 
Author Moretti, F.; Del Prete, M.; Montani, G. url  doi
openurl 
  Title Linear analysis of the gravitational beam-plasma instability Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 6 Pages 486 - 16pp  
  Keywords  
  Abstract We investigate the well-known phenomenon of the beam-plasma instability in the gravitational sector when a fast population of particles interacts with the massive scalar mode of a Horndeski theory of gravity, resulting in linear growth of the latter amplitude. Following the approach used in the standard electromagnetic case, we start from the dielectric representation of the gravitational plasma, as introduced in a previous analysis of the Landau damping for the scalar Horndeski mode. We then set up the modified Vlasov-Einstein equation, using a Dirac delta function to describe the fast beam distribution. We thus provide an analytical expression for the dispersion relation, and we demonstrate the existence of a nonzero growth rate for the linear evolution of the Horndeski scalar mode. A numerical investigation is then performed with a trapezoidal beam distribution function, which confirms the analytical results and allows us to demonstrate how the growth rate decreases as the beam spread increases.  
  Address [Moretti, Fabio] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, IFIC, Valencia 46100, Spain, Email: fabio.moretti@ext.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001005587700006 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 5570  
Permanent link to this record
 

 
Author Pedersen, L.G. et al; Morales, A.I. doi  openurl
  Title First spectroscopic study of odd-odd 78Cu Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 107 Issue 4 Pages 044301 - 10pp  
  Keywords  
  Abstract Nuclei in the vicinity of 78Ni are important benchmarks for nuclear structure, which can reveal changes in the shell structure far from stability. Spectroscopy of the odd-odd isotope 78Cu was performed for the first time in an experiment with the EURICA setup at the Radioactive Isotope Beam Factory at RIKEN Nishina Center. Excited states in the neutron-rich isotope were populated following the beta decay of 78Ni produced by in-flight fission and and separated by the BigRIPS separator. A level scheme based on the analysis of γ−γ coincidences is presented. Tentative spin and parity assignments were made when possible based on the β-decay feeding intensities and γ-decay properties of the excited states. Time correlations between β and γ decay show clear indications of an isomeric state with a half-life of 3.8(4) ms. Large-scale Monte Carlo shell-model calculations were performed using the A3DA-m interaction and a valence space comprising the full fp shell and the 1g9/2 and 2d5/2 orbitals for both protons and neutrons. The comparison of the experimental results with the shell-model calculations allows interpreting the excited states in terms of spin multiplets arising from the proton-neutron interaction. The results provide further insight into the evolution of the proton single-particle orbitals as a function of neutron number, and quantitative information about the proton-neutron interaction outside the doubly magic 78Ni core.  
  Address [Pedersen, L. G.; Sahin, E.; Gorgen, A.; Garrote, F. L. Bello; Modamio, V.] Univ Oslo, Dept Phys, NO-0316 Oslo, Norway, Email: l.g.pedersen@fys.uio.no;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000998180300003 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 5572  
Permanent link to this record
 

 
Author Dutka, T.P.; Gargalionis, J. url  doi
openurl 
  Title Dimension-five baryon-number violation in low-scale Pati-Salam models Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 3 Pages 035019 - 10pp  
  Keywords  
  Abstract The gauge bosons of the Pati-Salam model do not mediate proton decay at the renormalizable level, and for this reason it is possible to construct scenarios in which SU(4) (R) SU(2)R is broken at relatively low scales. In this paper we show that such low-scale models generate dimension-five operators that can give rise to nucleon decays at unacceptably large rates, even if the operators are suppressed by the Planck scale. We find an interesting complementarity between the nucleon-decay limits and the usual meson-decay constraints. Furthermore, we argue that these operators are generically present when the model is embedded into SO(10), lowering the suppression scale. Under reasonable assumptions, the lower limit on the breaking scale can be constrained to be as high as O(108) GeV.  
  Address [Dutka, Tomasz P.] Korea Inst Adv Study, Sch Phys, Seoul 02455, South Korea, Email: tdutka@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001004173000012 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 5573  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva