|   | 
Details
   web
Records
Author Boucenna, M.S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J.W.F.
Title Phenomenology of dark matter from A_4 flavor symmetry Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 037 - 20pp
Keywords Cosmology of Theories beyond the SM; Neutrino Physics; Discrete and Finite Symmetries
Abstract We investigate a model in which Dark Matter is stabilized by means of a Z(2) parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed patter of neutrino mixing. In our A(4) example the standard model is extended by three extra Higgs doublets and the Z(2) parity emerges as a remnant of the spontaneous breaking of A(4) after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.
Address [Boucenna, M. S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000291364300037 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ elepoucu @ Serial 674
Permanent link to this record
 

 
Author Barenboim, G.; Panotopoulos, G.
Title Direct neutralino searches in the NMSSM with gravitino LSP in the degenerate scenario Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 027 - 16pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Supersymmetric Standard Model
Abstract In the present work a two-component dark matter model is studied adopting the degenerate scenario in the R-parity conserving NMSSM. The gravitino LSP and the neutralino NLSP are extremely degenerate in mass, avoiding the BBN bounds and obtaining a high reheating temperature for thermal leptogenesis. In this model both gravitino (absolutely stable) and neutralino (quasi-stable) contribute to dark matter, and direct detection searches for neutralino are discussed. Points that survive all the constraints correspond to a singlino-like neutralino.
Address [Barenboim, G] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000294901400055 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ elepoucu @ Serial 771
Permanent link to this record
 

 
Author Panotopoulos, G.
Title A dynamical dark energy model with a given luminosity distance Type Journal Article
Year 2011 Publication General Relativity and Gravitation Abbreviated Journal Gen. Relativ. Gravit.
Volume 43 Issue 11 Pages 3191-3199
Keywords Dark energy; Observational cosmology; Particle-theory
Abstract It is assumed that the current cosmic acceleration is driven by a scalar field, the Lagrangian of which is a function of the kinetic term only, and that the luminosity distance is a given function of the red-shift. Upon comparison with baryon acoustic oscillations and cosmic microwave background data the parameters of the models are determined, and then the time evolution of the scalar field is determined by the dynamics using the cosmological equations. We find that the solution is very different than the corresponding solution when the non-relativistic matter is ignored, and that the universe enters the acceleration era at larger red-shift compared to the standard I > CDM model.
Address [Panotopoulos, G] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Grigoris.Panotopoulos@uv.es
Corporate Author Thesis
Publisher Springer/Plenum Publishers Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-7701 ISBN Medium
Area Expedition Conference
Notes WOS:000295982800015 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ elepoucu @ Serial 782
Permanent link to this record
 

 
Author Norena, J.; Verde, L.; Jimenez, R.; Pena-Garay, C.; Gomez, C.
Title Cancelling out systematic uncertainties Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 419 Issue 2 Pages 1040-1050
Keywords methods: statistical; cosmology: theory
Abstract We present a method to minimize, or even cancel out, the nuisance parameters affecting a measurement. Our approach is general and can be applied to any experiment or observation where systematic errors are a concern e.g. are larger than statistical errors. We compare it with the Bayesian technique used to deal with nuisance parameters: marginalization, and show how the method compares and improves by avoiding biases. We illustrate the method with several examples taken from the astrophysics and cosmology world: baryonic acoustic oscillations (BAOs), cosmic clocks, Type Ia supernova (SNIa) luminosity distance, neutrino oscillations and dark matter detection. By applying the method we not only recover some known results but also find some interesting new ones. For BAO experiments we show how to combine radial and angular BAO measurements in order to completely eliminate the dependence on the sound horizon at radiation drag. In the case of exploiting SNIa as standard candles we show how the uncertainty in the luminosity distance by a second parameter modelled as a metallicity dependence can be eliminated or greatly reduced. When using cosmic clocks to measure the expansion rate of the universe, we demonstrate how a particular combination of observables nearly removes the metallicity dependence of the galaxy on determining differential ages, thus removing the agemetallicity degeneracy in stellar populations. We hope that these findings will be useful in future surveys to obtain robust constraints on the dark energy equation of state.
Address [Norena, Jorge; Verde, Licia; Jimenez, Raul] Univ Barcelona IEEC UB, ICREA, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000298482300011 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 890
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C.
Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 043 - 17pp
Keywords neutrino masses from cosmology; double beta decay
Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.
Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000316989200044 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 1434
Permanent link to this record
 

 
Author Barenboim, G.; Rasero, J.
Title Structure formation during an early period of matter domination Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 138 - 17pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model
Abstract In this work we show that modifying the thermal history of the Universe by including an early period of matter domination can lead to the formation of astronomical objects. However, the survival of these objects can only be possible if the dominating matter decays to a daughter particle which is not only almost degenerate with the parent particle but also has an open annihilation channel. This requirement translates in an upper bound for the coupling of such a channel and makes the early structure formation viable.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000335452600003 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 1777
Permanent link to this record
 

 
Author Pallis, C.
Title Induced-gravity in inflation no-scale supergravity and beyond Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 057 - 20pp
Keywords inflation; supersymmetry and cosmology
Abstract Supersymmetric versions of induced-gravity inflation are formulated within Supergravity (SUGRA) employing two gauge singlet chiral super fields. The proposed super-potential is uniquely determined by applying a continuous R and a discrete Z(n) symmetry. We select two types of logarithmic Kahler potentials, one associated with a no-scale-type SU(2, 1)/SU(2) x U(1)(R) x Z(n) Kahler manifold and one more generic. In both cases, imposing a lower bound on the parameter c R involved in the coupling between the inflaton and the Ricci scalar curvature – e.g. c(R) greater than or similar to 76, 105, 310 for n – 2, 3 and 6 respectively -, inflation can be attained even for subplanckian values of the inflaton while the corresponding effective theory respects the perturbative unitarity. In the case of no-scale SUGRA we show that, for every n, the inflationary observables remain unchanged and in agreement with the current data while the inflaton mass is predicted to be 3 . 10(13) GeV. Beyond no-scale SUGRA the inflationary observables depend mildly on n and crucially on the coefficient involved in the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field.
Address [Pallis, C.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: kpallis@gen.auth.gr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000341848800057 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 1944
Permanent link to this record
 

 
Author Pallis, C.
Title Linking Starobinsky-type inflation in no-scale supergravity to MSSM Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 024 - 31pp
Keywords particle physics – cosmology connection; supersymmetry and cosmology; cosmology of theories beyond the SM; inflation
Abstract A novel realization of the Starobinsky inflationary model within a moderate extension of the Minimal Supersymmetric Standard Model (MSSM) is presented. The proposed superpotential is uniquely determined by applying a continuous R and a Z2 discrete symmetry, whereas the Kahler potential is associated with a no-scale-type SU(54, 1)/ SU(54) x U(1) R X Z2 Kahler manifold. The inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling (with a parameter CT involved) between the inflaton and the Ricci scalar curvature, inflation can be attained even for subplanckian values of the inflaton with CT >= 76 and the corresponding effective theory being valid up to the Planck scale. The inflationary observables turn out to be in agreement with the current data and the inflaton mass is predicted to be 3 10(3) GeV. At the cost of a relatively small superpotential coupling constant, the model offers also a resolution of the f,t problem of MSSM for CT <= 4500 and gravitino heavier than about 10(4) GeV. Supplementing MSSM by three right-handed neutrinos we show that spontaneously arising couplings between the inflaton and the particle content of MSSM not only ensure a sufficiently low reheating temperature but also support a scenario of non-thermal leptogenesis consistently with the neutrino oscillation parameters.
Address [Pallis, C.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: kpallis@auth.gr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000343042800006 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 1961
Permanent link to this record
 

 
Author Pallis, C.
Title Reconciling induced-gravity inflation in supergravity with the Planck 2013 & BICEP2 results Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 058 - 18pp
Keywords supersymmetry and cosmology; inflation; modified gravity
Abstract We generalize the embedding of induced-gravity inflation beyond the no-scale Supergravity presented in ref. [1] employing two gauge singlet chiral superfields, a superpotential uniquely determined by applying a continuous R and a discrete Z(n) symmetries, and a logarithmic Kahler potential including all the allowed terms up to fourth order in powers of the various fields. We show that, increasing slightly the prefactor (-3) encountered in the adopted Kahler potential, an efficient enhancement of the resulting tensor-to-scalar ratio can be achieved rendering the predictions of the model consistent with the recent BICEP2 results, even with subplanckian excursions of the original inflaton field. The remaining inflationary observables can become compatible with the data by mildly tuning the coefficient involved in the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field. The inflaton mass is predicted to be close to 10(14) GeV.
Address [Pallis, C.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: kpallis@auth.gr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000345990800059 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 2043
Permanent link to this record
 

 
Author Racker, J.; Rius, N.
Title Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 163 - 19pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model
Abstract We propose a mechanism for baryogenesis from particle decays or annihilations that can work at the TeV scale. Some heavy particles annihilate or decay into a heavy sterile neutrino N (with M greater than or similar to 0.5 TeV) and a “light” one nu (with m << 100 GeV), generating an asymmetry among the two helicity degrees of freedom of nu. This asymmetry is partially transferred to Standard Model leptons via fast Yukawa interactions and reprocessed into a baryon asymmetry by the electroweak sphalerons. We illustrate this mechanism in a WIMPy baryogenesis model where the helicity asymmetry is generated in the annihilation of dark matter. This model connects the baryon asymmetry, dark matter, and neutrino masses. Moreover it also complements previous studies on general requirements for baryogenesis from dark matter annihilation. Finally we discuss other possible realizations of this helicitogenesis mechanism.
Address [Racker, J.; Rius, N.] Univ Valencia, Dept Fis Teor, Inst Fis Corpuscular IFIC, CSIC, Valencia 46071, Spain, Email: racker@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347909700009 Approved no
Is ISI yes International Collaboration (down) no
Call Number IFIC @ pastor @ Serial 2078
Permanent link to this record