toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alvarez-Ruso, L. et al; Nieves, J. url  doi
openurl 
  Title NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering Type Journal Article
  Year 2018 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.  
  Volume 100 Issue Pages 1-68  
  Keywords Neutrino; Nucleus; Scattering; Nuclear; Model; Oscillations  
  Abstract The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process – from quasi-elastic to deep inelastic scattering – is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.  
  Address [Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: morfin@fnal.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430618800001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3569  
Permanent link to this record
 

 
Author Valcarce, A.; Vijande, J.; Richard, J.M.; Garcilazo, H. doi  openurl
  Title Stability of Heavy Tetraquarks Type Journal Article
  Year 2018 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.  
  Volume 59 Issue 2 Pages 9 - 7pp  
  Keywords  
  Abstract We discuss the stability of tetraquark systems with two different masses. After some reminders about the stability of very asymmetric QQ (q) over bar(q) over bar tetraquarks, we demonstrate that in the all-heavy limit q -> Q, the system becomes unstable for standard color-additive models. We also analyze the consequences of symmetry breaking for Qq (Q) over bar(q) over bar configurations: we find a kind of metastability between the lowest threshold Q (Q) over bar + q (q) over bar and the highest one, Q (q) over bar + (Q) over barq, and we calculate the width of the resonance. Our results are consistent with the experimental observation of narrow hadrons lying well above their lowest decay threshold.  
  Address [Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: valcarce@usal.es;  
  Corporate Author Thesis  
  Publisher Springer Wien Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427011200005 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3574  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Test of lepton flavor universality by the measurement of the B-0 -> D*(-) tau(+) nu(tau) branching fraction using three-prong tau decays Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 7 Pages 072013 - 26pp  
  Keywords  
  Abstract The ratio of branching fractions R(D*(-)) = B(B-0 -> D*(-) tau(+)nu(tau))/(B-0 -> D*(-) mu(+)nu(mu)) is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). The tau lepton is reconstructed with three charged pions in the final state. A novel method is used that exploits the different vertex topologies of signal and backgrounds to isolate samples of semitauonic decays of b hadrons with high purity. Using the B-0 -> D*(-) pi(+)pi(-)pi(+) decay as the normalization channel, the ratio B(B-0 -> D*(-) tau(+)nu(tau))/B(B-0 -> D* pi(+)pi(-)pi(+)) is measured to be 1.97 +/- 0.13 +/- 0.18, where the first uncertainty is statistical and the second systematic. An average of branching fraction measurements for the normalization channel is used to derive B(B-0 -> D*(-) tau(+)nu(tau))(_)= (1.42 +/- 0.094 +/- 0.129 +/- 0.054)%, where the third uncertainty is due to the limited knowledge of B(B-0 -> D*(-) pi(+)pi(-)pi(+)). A test of lepton flavor universality is performed using the well- measured branching fraction B(B-0 -> D*(-) mu(+)nu(mu)) to compute R(D*(-))0 = 0.291 +/- 0.019 +/- 0.026 +/- 0.013, where the third uncertainty originates from the uncertainties on B(B-0 -> D*(-) pi(+)pi(-)pi(+)) and B(B-0 -> D*(-) mu(+)nu(mu)) This measurement is in agreement with the Standard Model prediction and with previous measurements.  
  Address [Bediaga, I.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Lavra, L. Soares; Aoude, R. Tourinho Jadallah] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430819500001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3570  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the Ratio of the B-0 -> D*(-)iota(+)v(iota) and B-0 -> D*(-) mu(+)v(mu) Branching Fractions Using Three-Prong tau-Lepton Decays Type Journal Article
  Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 120 Issue 17 Pages 171802 - 11pp  
  Keywords  
  Abstract The ratio of branching fractions R(D*(-)) equivalent to B(B-0 -> D*(-) iota(+)v(iota))/B(B-0 -> D*(-) mu+ v(mu)) is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). For the first time, R(D*-) is determined using the iota-lepton decays with three charged pions in the final state. The B-0 -> D*(-) iota+ v(iota) yield is normalized to that of the B-0 -> D*(-) pi(+) pi(-) pi(+) mode, providing a measurement B-0 -> D*(-) iota+ v(iota) / B(B-0 -> D*(-) pi(+) pi(-) pi(+)) = 1.97 +/- 0.13 +/- 0.18, where the first uncertainty is statistical and the second systematic. The value of (B-0 -> D*(-) iota+ v(iota)) = (1.42 +/- 0.094 +/- 0.129 +/- 0.054)% is obtained, where the third uncertainty is due to the limited knowledge of the branching fraction of the normalization mode. Using the well-measured branching fraction of the B-0 -> D*(-) mu+ v(mu) decay, a value of R(D*(-)) = 0.291 +/- 0.019 +/- 0.026 +/- 0.013 is established, where the third uncertainty is due to the limited knowledge of the branching fractions of the normalization and B-0 -> D*(-) mu+ v(mu) modes. This measurement is in agreement with the standard model prediction and with previous results.  
  Address [Bediaga, I.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430822000002 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3571  
Permanent link to this record
 

 
Author Dias, J.M.; Debastiani, V.R.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title The radiative decay D-0 -> (K)over-bar*(0)gamma with vector meson dominance Type Journal Article
  Year 2018 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 42 Issue 4 Pages 043106 - 7pp  
  Keywords radiative decay; vector meson dominance; local hidden gauge symmetry  
  Abstract Motivated by the experimental measurements of D-0 radiative decay modes, we have proposed a model to study the D-0 -> (K) over bar*(0)gamma decay, by establishing a link with D-0 -> (K) over bar*(0) V (V = rho(0), omega) decays through the vector meson dominance hypothesis. In order to do this properly, we have used the Lagrangians from the local hidden gauge symmetry approach to account for V gamma conversion. As a result, we have found the branching ratio B[D-0 -> (K) over bar*(0)gamma]=(1.55-3.44)x10(-4), which is in fair agreement with the experimental values reported by the Belle and BaBar collaborations.  
  Address [Dias, J. M.; Debastiani, V. R.; Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China, Email: jdias@if.usp.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430884300010 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3572  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva