|   | 
Details
   web
Records
Author Barenboim, G.; Ternes, C.A.; Tortola, M.
Title Neutrinos, DUNE and the world best bound on CPT invariance Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 780 Issue Pages 631-637
Keywords Neutrino mass and mixing; Neutrino oscillation; CPT
Abstract CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3 sigma. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Delta(Delta m(31)(2)) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions.
Address [Barenboim, G.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000432187800085 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 3620
Permanent link to this record
 

 
Author Muñoz, E.; Barrio, J.; Bernabeu, J.; Etxebeste, A.; Lacasta, C.; Llosa, G.; Ros, A.; Roser, J.; Oliver, J.F.
Title Study and comparison of different sensitivity models for a two-plane Compton camera Type Journal Article
Year 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 63 Issue 13 Pages 135004 - 19pp
Keywords Compton camera imaging; MLEM; Monte Carlo simulations; image quality
Abstract Given the strong variations in the sensitivity of Compton cameras for the detection of events originating from different points in the field of view (FoV), sensitivity correction is often necessary in Compton image reconstruction. Several approaches for the calculation of the sensitivity matrix have been proposed in the literature. While most of these models are easily implemented and can be useful in many cases, they usually assume high angular coverage over the scattered photon, which is not the case for our prototype. In this work, we have derived an analytical model that allows us to calculate a detailed sensitivity matrix, which has been compared to other sensitivity models in the literature. Specifically, the proposed model describes the probability of measuring a useful event in a two-plane Compton camera, including the most relevant physical processes involved. The model has been used to obtain an expression for the system and sensitivity matrices for iterative image reconstruction. These matrices have been validated taking Monte Carlo simulations as a reference. In order to study the impact of the sensitivity, images reconstructed with our sensitivity model and with other models have been compared. Images have been reconstructed from several simulated sources, including point-like sources and extended distributions of activity, and also from experimental data measured with Na-22 sources. Results show that our sensitivity model is the best suited for our prototype. Although other models in the literature perform successfully in many scenarios, they are not applicable in all the geometrical configurations of interest for our system. In general, our model allows to effectively recover the intensity of point-like sources at different positions in the FoV and to reconstruct regions of homogeneous activity with minimal variance. Moreover, it can be employed for all Compton camera configurations, including those with low angular coverage over the scatterer.
Address [Munoz, Enrique; Barrio, John; Bernabeu, Jose; Etxebeste, Ane; Lacasta, Carlos; Llosa, Gabriela; Ros, Ana; Roser, Jorge; Oliver, Josep F.] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000436390800004 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 3639
Permanent link to this record
 

 
Author Vento, V.
Title Skyrmions at high density Type Journal Article
Year 2018 Publication Physics of Particles and Nuclei Letters Abbreviated Journal Phys. Part. Nuclei Lett.
Volume 15 Issue 4 Pages 367-370
Keywords quark; pion; skyrmion; dilation
Abstract The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark gluon plasma. We describe its formulation in terms of Skyrme crystals and justify the origin of the quarkyonic phase transition in a chiral-quark model.
Address [Vento, V.] Univ Valencia, CSIC, Dept Fis Teor IFIC, E-46100 Burjassot, Valencia, Spain, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Pleiades Publishing Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1547-4771 ISBN Medium
Area Expedition Conference
Notes WOS:000437770100006 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 3651
Permanent link to this record
 

 
Author Alcaide, J.; Salvado, J.; Santamaria, A.
Title Fitting flavour symmetries: the case of two-zero neutrino mass textures Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 164 - 18pp
Keywords Neutrino Physics; Quark Masses and SM Parameters
Abstract We present a numeric method for the analysis of the fermion mass matrices predicted in flavour models. The method does not require any previous algebraic work, it offers a chi(2) comparison test and an easy estimate of confidence intervals. It can also be used to study the stability of the results when the predictions are disturbed by small perturbations. We have applied the method to the case of two-zero neutrino mass textures using the latest available fits on neutrino oscillations, derived the available parameter space for each texture and compared them. Textures A(1) and A(2) seem favoured because they give a small chi(2), allow for large regions in parameter space and give neutrino masses compatible with Cosmology limits. The other “allowed” textures remain allowed although with a very constrained parameter space, which, in some cases, could be in conflict with Cosmology. We have also revisited the “forbidden” textures and studied the stability of the results when the texture zeroes are not exact. Most of the forbidden textures remain forbidden, but textures F-1 and F-3 are particularly sensitive to small perturbations and could become allowed.
Address [Alcaide, Julien; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Valencia, Spain, Email: julien.alcaide@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000440091700010 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 3680
Permanent link to this record
 

 
Author Aliaga, R.J.; Guirao, A.J.
Title On the preserved extremal structure of Lipschitz-free spaces Type Journal Article
Year 2019 Publication Studia Mathematica Abbreviated Journal Studia Math.
Volume 245 Issue 1 Pages 1-14
Keywords concave space; extremal structure; Lipschitz-free space; Lipschitz function; metric alignment; preserved extreme point
Abstract We characterize preserved extreme points of the unit ball of Lipschitz-free spaces F (X) in terms of simple geometric conditions on the underlying metric space (X, d). Namely, the preserved extreme points are the elementary molecules corresponding to pairs of points p, q in X such that the triangle inequality d (p, q) <= d (p, r) + d (q, r) is uniformly strict for r away from p, q. For compact X, this condition reduces to the triangle inequality being strict. As a consequence, we give an affirmative answer to a conjecture of N. Weaver that compact spaces are concave if and only if they have no triple of metrically aligned points, and we show that all extreme points are preserved for several classes of compact metric spaces X, including Holder and countable compacta.
Address [Aliaga, Ramon J.; Guirao, Antonio J.] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, E-46022 Valencia, Spain, Email: raalva@upvnet.upv.es;
Corporate Author Thesis
Publisher Polish Acad Sciences Inst Mathematics-Impan Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-3223 ISBN Medium
Area Expedition Conference
Notes WOS:000446980500001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 3753
Permanent link to this record