|   | 
Details
   web
Records
Author Muñoz, E.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Llosa, G.; Ros, A.; Roser, J.; Oliver, J.F.
Title A spectral reconstruction algorithm for two-plane Compton cameras Type Journal Article
Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 2 Pages 025011 - 17pp
Keywords Compton imaging; Compton camera; hadron therapy; image reconstruction
Abstract One factor limiting the current applicability extent of hadron therapy is the lack of a reliable method for real time treatment monitoring. The use of Compton imaging systems as monitors requires the correct reconstruction of the distribution of prompt gamma productions during patient irradiation. In order to extract the maximum information from all the measurable events, we implemented a spectral reconstruction method that assigns to all events a probability of being either partial or total energy depositions. The method, implemented in a list-mode maximum likelihood expectation maximization algorithm, generates a four dimensional image in the joint spatial-spectral domain, in which the voxels containing the emission positions and energies are obtained. The analytical model used for the system response function is also employed to derive an analytical expression for the sensitivity, which is calculated via Monte Carlo integration. The performance of the method is evaluated through reconstruction of various experimental and simulated sources with different spatial and energy distributions. The results show that the proposed method can recover the spectral and spatial information simultaneously, but only under the assumption of ideal measurements. The analysis of the Monte Carlo simulations has led to the identification of two important degradation sources: the mispositioning of the gamma interaction point and the missing energy recorded in the interaction. Both factors are related to the high energy transferred to the recoil electrons, which can travel far from the interaction point and even escape the detector. These effects prevent the direct application of the current method in more realistic scenarios. Nevertheless, experimental point-like sources have been accurately reconstructed and the spatial distributions and spectral emission of complex simulated phantoms can be identified.
Address [Munoz, Enrique; Barrientos, Luis; Bernabeu, Jose; Borja-Lloret, Marina; Llosa, Gabriela; Ros, Ana; Roser, Jorge; Oliver, Josep F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000520111400001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 4332
Permanent link to this record
 

 
Author Roser, J.; Muñoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J.F.
Title Image reconstruction for a multi-layer Compton telescope: an analytical model for three interaction events Type Journal Article
Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 14 Pages 145005 - 17pp
Keywords Compton camera; Compton imaging; hadron therapy; image reconstruction; lm-mlem; monte carlo simulations; multi-layer Compton telescope
Abstract Compton Cameras are electronically collimated photon imagers suitable for sub-MeV to few MeV gamma-ray detection. Such features are desirable to enablein vivorange verification in hadron therapy, through the detection of secondary Prompt Gammas. A major concern with this technique is the poor image quality obtained when the incoming gamma-ray energy is unknown. Compton Cameras with more than two detector planes (multi-layer Compton Cameras) have been proposed as a solution, given that these devices incorporate more signal sequences of interactions to the conventional two interaction events. In particular, three interaction events convey more spectral information as they allow inferring directly the incident gamma-ray energy. A three-layer Compton Telescope based on continuous Lanthanum (III) Bromide crystals coupled to Silicon Photomultipliers is being developed at the IRIS group of IFIC-Valencia. In a previous work we proposed a spectral reconstruction algorithm for two interaction events based on an analytical model for the formation of the signal. To fully exploit the capabilities of our prototype, we present here an extension of the model for three interaction events. Analytical expressions of the sensitivity and the System Matrix are derived and validated against Monte Carlo simulations. Implemented in a List Mode Maximum Likelihood Expectation Maximization algorithm, the proposed model allows us to obtain four-dimensional (energy and position) images by using exclusively three interaction events. We are able to recover the correct spectrum and spatial distribution of gamma-ray sources when ideal data are employed. However, the uncertainties associated to experimental measurements result in a degradation when real data from complex structures are employed. Incorrect estimation of the incident gamma-ray interaction positions, and missing deposited energy associated with escaping secondaries, have been identified as the causes of such degradation by means of a detailed Monte Carlo study. As expected, our current experimental resolution and efficiency to three interaction events prevents us from correctly recovering complex structures of radioactive sources. However, given the better spectral information conveyed by three interaction events, we expect an improvement of the image quality of conventional Compton imaging when including such events. In this regard, future development includes the incorporation of the model assessed in this work to the two interaction events model in order to allow using simultaneously two and three interaction events in the image reconstruction.
Address [Roser, J.; Munoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J. F.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: Jorge.Roser@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000552701600001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 4481
Permanent link to this record
 

 
Author Ros Garcia, A.; Barrio, J.; Etxebeste, A.; Garcia-Lopez, J.; Jimenez-Ramos, M.C.; Lacasta, C.; Muñoz, E.; Oliver, J.F.; Roser, J.; Llosa, G.
Title MACACO II test-beam with high energy photons Type Journal Article
Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 24 Pages 245027 - 12pp
Keywords Compton imaging; Compton camera; proton therapy; LaBr3; test-beam; image reconstruction
Abstract The IRIS group at IFIC Valencia is developing a three-layer Compton camera for treatment monitoring in proton therapy. The system is composed of three detector planes, each made of a LaBr3<i monolithic crystal coupled to a SiPM array. Having obtained successful results with the first prototype (MACACO) that demonstrated the feasibility of the proposed technology, a second prototype (MACACO II) with improved performance has been developed, and is the subject of this work. The new system has an enhanced detector energy resolution which translates into a higher spatial resolution of the telescope. The image reconstruction method has also been improved with an accurate model of the sensitivity matrix. The device has been tested with high energy photons at the National Accelerator Centre (CNA, Seville). The tests involved a proton beam of 18 MeV impinging on a graphite target, to produce 4.4 MeV photons. Data were taken at different system positions of the telescope with the first detector at 65 and 160 mm from the target, and at different beam intensities. The measurements allowed successful reconstruction of the photon emission distribution at two target positions separated by 5 mm in different telescope configurations. This result was obtained both with data recorded in the first and second telescope planes (two interaction events) and, for the first time in beam experiments, with data recorded in the three planes (three interaction events).
Address [Ros Garcia, A.; Barrio, J.; Etxebeste, A.; Lacasta, C.; Munoz, E.; Oliver, J. F.; Roser, J.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: arosgar@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000600803000001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 4654
Permanent link to this record
 

 
Author Balibrea-Correa, J.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Caballero, L.; Calvo, D.; Ladarescu, I.; Olleros-Rodriguez, P.; Domingo-Pardo, C.
Title Machine Learning aided 3D-position reconstruction in large LaCl3 crystals Type Journal Article
Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1001 Issue Pages 165249 - 17pp
Keywords Gamma-ray; Position sensitive detectors; Monolithic crystals; Compton imaging; Machine Learning; Convolutional Neural Networks; Total Energy Detector; Neutron capture cross-section
Abstract We investigate five different models to reconstruct the 3D gamma-ray hit coordinates in five large LaCl3(Ce) monolithic crystals optically coupled to pixelated silicon photomultipliers. These scintillators have a base surface of 50 x 50 mm(2) and five different thicknesses, from 10 mm to 30 mm. Four of these models are analytical prescriptions and one is based on a Convolutional Neural Network. Average resolutions close to 1-2 mm fwhm are obtained in the transverse crystal plane for crystal thicknesses between 10 mm and 20 mm using analytical models. For thicker crystals average resolutions of about 3-5 mm fwhm are obtained. Depth of interaction resolutions between 1 mm and 4 mm are achieved depending on the distance of the interaction point to the photosensor surface. We propose a Machine Learning algorithm to correct for linearity distortions and pin-cushion effects. The latter allows one to keep a large field of view of about 70%-80% of the crystal surface, regardless of crystal thickness. This work is aimed at optimizing the performance of the so-called Total Energy Detector with Compton imaging capability (i-TED) for time-of-flight neutron capture cross-section measurements.
Address [Balibrea-Correa, J.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Caballero, L.; Calvo, D.; Ladarescu, I.; Olleros-Rodriguez, P.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: javier.balibrea@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000641308300007 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 4803
Permanent link to this record
 

 
Author Roser, J.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Muñoz, E.; Ros, A.; Viegas, R.; Llosa, G.
Title Joint image reconstruction algorithm in Compton cameras Type Journal Article
Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 67 Issue 15 Pages 155009 - 15pp
Keywords Compton camera; compton imaging; hadron therapy; image reconstruction; LM-MLEM; Monte Carlo simulations; multi-layer compton telescope
Abstract Objective. To demonstrate the benefits of using an joint image reconstruction algorithm based on the List Mode Maximum Likelihood Expectation Maximization that combines events measured in different channels of information of a Compton camera. Approach. Both simulations and experimental data are employed to show the algorithm performance. Main results. The obtained joint images present improved image quality and yield better estimates of displacements of high-energy gamma-ray emitting sources. The algorithm also provides images that are more stable than any individual channel against the noisy convergence that characterizes Maximum Likelihood based algorithms. Significance. The joint reconstruction algorithm can improve the quality and robustness of Compton camera images. It also has high versatility, as it can be easily adapted to any Compton camera geometry. It is thus expected to represent an important step in the optimization of Compton camera imaging.
Address [Roser, J.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Munoz, E.; Ros, A.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Jorge.Roser@ific.uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000827830200001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 5298
Permanent link to this record
 

 
Author Borys, D. et al; Brzezinski, K.
Title ProTheRaMon-a GATE simulation framework for proton therapy range monitoring using PET imaging Type Journal Article
Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 67 Issue 22 Pages 224002 - 15pp
Keywords proton therapy; GATE; Monte Carlo simulations; J-PET; medical imaging
Abstract Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022).
Address [Borys, Damian] Silesian Tech Univ, Dept Syst Biol & Engn, Gliwice, Poland, Email: damin.borys@polsl.pl
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000885248200001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 5416
Permanent link to this record
 

 
Author Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Muñoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.
Title Influence of the background in Compton camera images for proton therapy treatment monitoring Type Journal Article
Year 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 68 Issue 14 Pages 144001 - 16pp
Keywords Compton imaging; Compton camera; proton therapy; treatment monitoring; Monte Carlo simulation; image reconstruction; background
Abstract Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.
Address [Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Munoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.] Inst Fis Corpuscular IFIC, CSIC UV, Valencia, Spain, Email: Marina.Borja@csic.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:001022671300001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 5571
Permanent link to this record
 

 
Author Lerendegui-Marco, J.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Calvo, D.; Ladarescu, I.; Domingo-Pardo, C.
Title Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections Type Journal Article
Year 2024 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.
Volume 11 Issue 1 Pages 2 - 17pp
Keywords Gamma imaging; Neutron imaging; Nuclear inspections; Homeland security; Nuclear waste characterization
Abstract This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.
Address [Lerendegui-Marco, Jorge; Babiano-Suarez, Victor; Balibrea-Correa, Javier; Caballero, Luis; Calvo, David; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2195-7045 ISBN Medium
Area Expedition Conference
Notes WOS:001171512700001 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 5975
Permanent link to this record
 

 
Author AGATA Collaboration; Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E.
Title Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 622 Issue 3 Pages 614-618
Keywords Gamma spectroscopy; Gamma tracking; Imaging; Position-sensitive germanium detectors
Abstract The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the gamma-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the gamma rays originated outside the target, the new generation of position sensitive gamma-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the gamma rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back gamma rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.
Address [Doncel, M.; Quintana, B.] Univ Salamanca, Lab Radiac Ionizantes, E-37008 Salamanca, Spain, Email: doncel@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000282562700017 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 257
Permanent link to this record
 

 
Author Linhart, V.; Burdette, D.; Chessi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Studen, A.; Weilhammer, P.; Zontar, D.
Title Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages C01092 - 8pp
Keywords Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Compton imaging
Abstract Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.
Address [Linhart, V.; Lacasta, C.; Llosa, G.; Stankova, V.] UVEG, CSIC, IFIC, Expt Phys Dept,Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Vladimir.Linhart@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000291345600097 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ elepoucu @ Serial 645
Permanent link to this record