toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L. url  doi
openurl 
  Title The dark side of curvature Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 008 - 17pp  
  Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR  
  Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276103000026 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ elepoucu @ Serial 465  
Permanent link to this record
 

 
Author Tortola, M. doi  openurl
  Title Status of three-neutrino oscillation parameters Type Journal Article
  Year 2013 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.  
  Volume 61 Issue 4-5 Pages 427-440  
  Keywords Neutrino mass and mixing; neutrino oscillations; solar and atmospheric neutrinos; reactor and accelerator neutrinos  
  Abstract Here we review the current status of global fits to neutrino oscillation data within the three-flavour framework. In our analysis we include the most recent data from solar and atmospheric neutrino experiments as well as the latest results from the long-baseline accelerator neutrino experiments and the recent measurements of reactor neutrino disappearance reported by Double Chooz, Daya Bay and RENO. We present updated determinations for the two neutrino mass splittings and the three mixing angles responsible for neutrino oscillations that, for the first time, have all been measured with 1 sigma accuracies ranging from 3 to 15%. A weak sensitivity for the CP violating phase is also reported from the global analysis.  
  Address Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Valencia 46071, Spain, Email: mariam@ific.uv.es  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0015-8208 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317019900005 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 1411  
Permanent link to this record
 

 
Author Valle, J.W.F. url  doi
openurl 
  Title Status and implications of neutrino masses: a brief panorama Type Journal Article
  Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 30 Issue 13 Pages 1530034 - 13pp  
  Keywords Neutrino mixing and oscillations; seesaw mechanism; quark-lepton unification; flavor symmetry; electroweak symmetry breaking; neutrinoless double beta decay; dark matter; inflation  
  Abstract With the historic discovery of the Higgs boson our picutre of particle physics would have been complete were it nor for the neutrino sector and cosmology. I briefly discuss the role of neutrino masses and mixing upon gauge coupling unification, electroweak breaking and the flavor sector. Time is ripe for new discoveries such as leptonic CP violation, charged lepton flavor violation and neutrinoless double beta decay. Neutrinos could also play a role is elucidating the nature of dark matter and cosmic inflation.  
  Address Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000353955400002 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 2211  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects Type Journal Article
  Year 2018 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 5 Issue Pages 36 - 50pp  
  Keywords neutrino mass ordering; neutrino oscillations; neutrinoless double beta (0v beta beta) decay; large scale structure formation; cosmic microwave Background (CMB); neutrino masses and flavor mixing  
  Abstract The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.  
  Address [de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446788500001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3755  
Permanent link to this record
 

 
Author de Adelhart Toorop, R.; Bazzocchi, F.; Morisi, S. url  doi
openurl 
  Title Quark mixing in the discrete dark matter model Type Journal Article
  Year 2012 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 856 Issue 3 Pages 670-681  
  Keywords Discrete flavour symmetries; Dark matter; Meson oscillations  
  Abstract We consider a model in which dark matter is stable as it is charged under a Z(2) symmetry that is residual after an A(4) flavour symmetry is broken. We consider the possibility to generate the quark masses by charging the quarks appropriately under A(4). We find that it is possible to generate the CKM mixing matrix by an interplay of renormalisable and dimension-six operators. In this set-up, we predict the third neutrino mixing angle to be large and the dark matter relic density to be in the correct range. Low energy observables – in particular meson-antimeson oscillations – are hard to facilitate. We find that only in a situation where there is a strong cancellation between the Standard Model contribution and the contribution of the new Higgs fields, B meson oscillations are under control.  
  Address [Toorop, Reinier de Adelhart] Nikhef Theory Grp, NL-1098 XG Amsterdam, Netherlands, Email: reintoorop@nikhef.nl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300028200003 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 891  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva