toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pavao, R.P.; Sakai, S.; Oset, E. url  doi
openurl 
  Title Triangle singularities in B- -> D*(0)pi(-)pi(0)eta and B- -> D*(0)pi(-)pi(+)pi(-) Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 9 Pages 599 - 8pp  
  Keywords  
  Abstract The possible role of the triangle mechanism in the B- decay into D*(0)pi(-)pi(0)eta and D*(0)pi(-)pi(+)pi(-) is investigated. In this process, the triangle singularity appears from the decay of B- into D*K-0(-) K*(0) followed by the decay of K-*0 into pi(-) K+ and the fusion of the K+ K-, which forms the a(0)(980) or f(0)(980), which finally decay into pi(0)eta or pi(+)pi(-), respectively. The triangle mechanism from the (K) over bar * K (K) over bar loop generates a peak around 1420 MeV in the invariant mass of pi(-) a(0) or pi(-) f(0), and it gives sizable branching fractions, Br(B- -> D*(0)pi(-) a(0); a(0) -> pi(0)eta) = (1.66 +/- 0.45) x 10(-6) and Br(B- -> D*(0)pi(-) f(0); f(0) -> pi(+)pi(-)) = (2.82 +/- 0.75) x 10(-6).  
  Address [Pavao, R.; Sakai, S.; Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: rpavao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000410891900001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3297  
Permanent link to this record
 

 
Author Pavao, R.; Sakai, S.; Oset, E. url  doi
openurl 
  Title Production of N*(1535) and N*(1650) in Lambda(c)-> (K)over-bar(0)eta p (pi N) decay Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 98 Issue 1 Pages 015201 - 8pp  
  Keywords  
  Abstract To study the properties of the N*(1535) and N*(1650), we calculate the mass distributions of MB in the Lambda(c) -> (K) over bar (MB)-M-0 decay, with MB = pi N(I = 1/2), eta p, and K Sigma(I = 1/2). We do this by calculating the tree-level and loop contributions, mixing pseudoscalar-baryon and vector-baryon channels using the local hidden gauge formalism. The loop contributions for each channel are calculated using the chiral unitary approach. We observe that for the eta N mass distribution only the N* (1535) is seen, with the N* (1650) contributing to the width of the curve, but for the pi N mass distribution both resonances are clearly visible. In the case of MB = K Sigma, we found that the strength of the K E mass distribution is smaller than that of the mass distributions of the pi N and eta p in the Lambda(+)(c)-> (K) over bar (0)pi N and Lambda(+)(c) -> (K) over bar (0)eta p processes, in spite of this channel having a large coupling to the N* (1650). This is because the K Sigma pair production is suppressed in the primary production from the Lambda(c) decay.  
  Address [Pavao, R.] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teor, Valencia 46071, Spain, Email: rpavao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436940200003 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3643  
Permanent link to this record
 

 
Author Pavao, R.; Oset, E. url  doi
openurl 
  Title Coupled channels dynamics in the generation of the Omega (2012) resonance Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 78 Issue 10 Pages 857 - 8pp  
  Keywords  
  Abstract We look into the newly observed Omega (2012) state from the molecular perspective in which the resonance is generated from the (K) over bar Xi*, eta Omega and (K) over bar Xi channels. We find that this picture provides a natural explanation of the properties of the Omega (2012) state. We stress that the molecular nature of the resonance is revealed with a large coupling of the Omega (2012) to the (K) over bar Xi* channel, that can be observed in the Omega (2012) -> (K) over bar pi Xi decay which is incorporated automatically in our chiral unitary approach via the use of the spectral function of Xi* in the evaluation of the (K) over bar Xi* loop function.  
  Address [Pavao, R.; Oset, E.] Univ Valencia, CSIC, Ctr Mixto, Inst Invest Paterna,Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: rpavao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448427200003 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3782  
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R. url  doi
openurl 
  Title Nature of the lowest-lying odd parity charmed baryon Lambda(c)(2595) and Lambda(c)(2625) resonances Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 1 Pages 014018 - 17pp  
  Keywords  
  Abstract We study the structure of the Lambda(c) (2595) and Lambda(c) (2625) resonances in the framework of an effective field theory consistent with heavy quark spin and chiral symmetries, which incorporates the interplay between Sigma(()(c)*() )pi – ND(*()) baryon-meson degrees of freedom (d.o.f.) and bare P-wave c (u) over bard quark-model states. We show that these two resonances are not heavy quark spin symmetry partners. The J(P) = 3/2(-) Lambda(c) (2625) should be viewed mostly as a dressed three-quark state, whose origin is determined by a bare state, predicted to lie very close to the mass of the resonance. The J(P) = 1/2(-) Lambda(c) (2595) seems to have, however, a predominant molecular structure. This is because it is either the result of the chiral Sigma(c)pi interaction, whose threshold is located much closer than the mass of the bare three-quark state, or because the light d.o.f. in its inner structure are coupled to the unnatural 0(-) quantum numbers. We show that both situations can occur depending on the renormalization procedure used. We find some additional states, but the classification of the spectrum in terms of heavy quark spin symmetry is difficult, despite having used interactions that respect this symmetry. This is because the bare quark-model state and the Sigma(c)pi threshold are located extraordinarily close to the Lambda(c) (2625) and Lambda(c) (2595), respectively, and hence they play totally different roles in each sector.  
  Address [Nieves, J.; Pavao, R.] Ctr Mixto CSIC UV, Inst Invest Paterna, Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000509494900007 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 4272  
Permanent link to this record
 

 
Author Pavao, R.; Gubler, P.; Fernandez-Soler, P.; Nieves, J.; Oka, M.; Takahashi, T.T. url  doi
openurl 
  Title The negative-parity spin-1/2 A baryon spectrum from lattice QCD and effective theory Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 820 Issue Pages 136473 - 8pp  
  Keywords  
  Abstract The spectrum of the negative-parity spin-1/2 Lambda baryons is studied using lattice QCD and hadronic effective theory in a unitarized coupled-channel framework. A direct comparison between the two approaches is possible by considering the hadronic effective theory in a finite volume and with hadron masses and mesonic decay constants that correspond to the situation studied on the lattice. Comparing the energy level spectrum and SU(3) flavor decompositions of the individual states, it is found that the lowest two states extracted from lattice QCD can be associated with one of the two Lambda(1405)-poles and the Lambda(1670) resonance. The quark mass dependences of these two lattice QCD levels are in good agreement with their effective theory counterparts. However, as current lattice QCD studies still rely on three-quark operators to generate the physical states, clear signals corresponding to the meson-baryon scattering states, that appear in the finite volume effective theory calculation, are not yet seen.  
  Address [Pavao, Rafael; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, CSIC, Inst Invest Paterna, Inst Fis Corpuscular IFIC,Ctr Mixto, Apartado 22085, E-46071 Valencia, Spain, Email: gubler@post.j-parc.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000713101800041 Approved no  
  Is ISI yes International Collaboration (up) yes  
  Call Number IFIC @ pastor @ Serial 5022  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva