toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hinarejos, M.; Di Franco, C.; Romanelli, A.; Perez, A. url  doi
openurl 
  Title Chirality asymptotic behavior and non-Markovianity in quantum walks on a line Type Journal Article
  Year 2014 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 89 Issue 5 Pages 052330 - 7pp  
  Keywords  
  Abstract We investigate the time evolution of the chirality reduced density matrix for a discrete-time quantum walk on a one-dimensional lattice. The matrix is obtained by tracing out the spatial degree of freedom. We analyze the standard case, without decoherence, and the situation in which decoherence appears in the form of broken links in the lattice. By examining the trace distance for possible pairs of initial states as a function of time, we conclude that the evolution of the reduced density matrix is non-Markovian, in the sense defined by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)]. As the level of noise increases, the dynamics approaches a Markovian process. The highest non-Markovianity corresponds to the case without decoherence. The reduced density matrix tends always to a well-defined limit that we calculate, but only in the decoherence-free case is this limit nontrivial.  
  Address [Hinarejos, Margarida; Perez, Armando] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000336751300003 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 1807  
Permanent link to this record
 

 
Author Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F. url  doi
openurl 
  Title Quantum walks and non-Abelian discrete gauge theory Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 1 Pages 012335 - 6pp  
  Keywords  
  Abstract A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N) gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual U(N) gauge fields in two-dimensional spacetime. A discrete generalization of the usual U(N) curvature is also constructed. An alternate interpretation of these results in terms of superimposed U(1) Maxwell fields and SU(N) gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e., nonquantum) motions in classical SU(2) fields. The results presented in this paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.  
  Address [Arnault, Pablo; Debbasch, Fabrice] Univ Paris 06, Univ Paris 04, PSL Res Univ, LERMA,Observ Paris,CNRS,UMR 8112, F-75014 Paris, France, Email: pablo.arnault@upmc.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000380095000005 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 2761  
Permanent link to this record
 

 
Author Bru, L.A.; de Valcarcel, G.J.; Di Molfetta, G.; Perez, A.; Roldan, E.; Silva, F. url  doi
openurl 
  Title Quantum walk on a cylinder Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 3 Pages 032328 - 7pp  
  Keywords  
  Abstract We consider the two-dimensional alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or “hidden” extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasimomentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasimomentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high-energy physical theories that include extra dimensions. Finally, entanglement between the coin and spatial degrees of freedom is studied, showing that the entanglement entropy clearly overcomes the value reached with only one spatial dimension.  
  Address [Bru, Luis A.] Univ Politecn Valencia, ITEAM Res Inst, Opt & Quantum Commun Grp, Camino Vera S-N, E-46022 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384060700005 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 2823  
Permanent link to this record
 

 
Author Degiovanni, A.; Wuensch, W.; Giner Navarro, J. doi  openurl
  Title Comparison of the conditioning of high gradient accelerating structures Type Journal Article
  Year 2016 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 19 Issue 3 Pages 032001 - 6pp  
  Keywords  
  Abstract Accelerating gradients in excess of 100 MV/m, at very low breakdown rates, have been successfully achieved in numerous prototype CLIC accelerating structures. The conditioning and operational histories of several structures, tested at KEK and CERN, have been compared and there is clear evidence that the conditioning progresses with the number of rf pulses and not with the number of breakdowns. This observation opens the possibility that the optimum conditioning strategy, which minimizes the total number of breakdowns the structure is subject to without increasing conditioning time, may be to never exceed the breakdown rate target for operation. The result is also likely to have a strong impact on efforts to understand the physical mechanism underlying conditioning and may lead to preparation procedures which reduce conditioning time.  
  Address [Degiovanni, Alberto; Wuensch, Walter] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: walter.wuensch@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400274700001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3090  
Permanent link to this record
 

 
Author Marquez-Martin, I.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time Type Journal Article
  Year 2017 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 95 Issue 4 Pages 042112 - 5pp  
  Keywords  
  Abstract We analyze the properties of a two-and three-dimensional quantum walk that are inspired by the idea of a brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983)]. In that model, particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the “ordinary” dimensions.  
  Address [Marquez-Martin, I.; Di Molfetta, G.; Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399931500006 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3102  
Permanent link to this record
 

 
Author Wuensch, W.; Degiovanni, A.; Calatroni, S.; Korsback, A.; Djurabekova, F.; Rajamaki, R.; Giner-Navarro, J. doi  openurl
  Title Statistics of vacuum breakdown in the high-gradient and low-rate regime Type Journal Article
  Year 2017 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 20 Issue 1 Pages 011007 - 11pp  
  Keywords  
  Abstract In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DCto 12GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.  
  Address [Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: anders.korsback@helsinki.fi  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400781300001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3125  
Permanent link to this record
 

 
Author Argyropoulos, T.; Catalan-Lasheras, N.; Grudiev, A.; Mcmonagle, G.; Rodriguez-Castro, E.; Syrachev, I.; Wegner, R.; Woolley, B.; Wuensch, W.; Zha, H.; Dolgashev, V.; Bowden, G.; Haase, A.; Lucas, T.G.; Volpi, M.; Esperante-Pereira, D.; Rajamaki, R. doi  openurl
  Title Design, fabrication, and high-gradient testing of an X-band, traveling-wave accelerating structure milled from copper halves Type Journal Article
  Year 2018 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 21 Issue 6 Pages 061001 - 11pp  
  Keywords  
  Abstract A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV/m at a rf breakdown rate of less than 1.5 x 10(-5) breakdowns/pulse/m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.  
  Address [Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: thomas.geoffrey.lucas@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000434469900001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3608  
Permanent link to this record
 

 
Author Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A. url  doi
openurl 
  Title Dirac equation as a quantum walk over the honeycomb and triangular lattices Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 97 Issue 6 Pages 062111 - 5pp  
  Keywords  
  Abstract A discrete-time quantum walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in (2 + 1) dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice, both of interest in the study of quantum propagation on the nonrectangular grids, as in graphene-like materials. The latter, in particular, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.  
  Address [Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Aix Marseille Univ, Univ Toulon, LIS, CNRS, Marseille, France, Email: pablo.arrighi@univ-amu.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435076800001 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3624  
Permanent link to this record
 

 
Author Di Molfetta, G.; Soares-Pinto, D.O.; Duarte Queiros, S.M. url  doi
openurl 
  Title Elephant quantum walk Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 97 Issue 6 Pages 062112 - 6pp  
  Keywords  
  Abstract We introduce an analytically treatable discrete time quantum walk in a one-dimensional lattice which combines non-Markovianity and hyperballistic diffusion associated with a Gaussian whose variance sigma(2)(t) grows cubicly with time sigma alpha t(3). These properties have have been numerically found in several systems, namely, tight-binding lattice models. For its rules, our model can be understood as the quantum version of the classical non-Markovian “elephant random walk” process for which the quantum coin operator only changes the value of the diffusion constant although, contrarily, to the classical coin.  
  Address [Di Molfetta, Giuseppe] Univ Toulon & Var, Aix Marseille Univ, Nat Computat Res Grp, CNRS,LIS, Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435076800002 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3625  
Permanent link to this record
 

 
Author Marquez-Martin, I.; Arnault, P.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 98 Issue 3 Pages 032333 - 8pp  
  Keywords  
  Abstract Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two steps of the evolution, we define a density current which is gauge invariant and conserved. In the continuum limit, the dynamics of the particle, under a suitable choice of the parameters, becomes the Dirac equation and the conserved current satisfies the corresponding conservation equation.  
  Address [Marquez-Martin, Ivan; Arnault, Pablo; Di Molfetta, Giuseppe; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: ivan.marquez@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446163200006 Approved no  
  Is ISI yes International Collaboration (down) yes  
  Call Number IFIC @ pastor @ Serial 3750  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva