|   | 
Details
   web
Records
Author Wagner, C.; Verde, L.; Boubekeur, L.
Title N-body simulations with generic non-Gaussian initial conditions I: power spectrum and halo mass function Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 022 - 24pp
Keywords power spectrum; cosmological simulations; initial conditions and eternal universe; galaxy clusters
Abstract We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/similar to liciaverde/NGSCP.html.
Address [Wagner, Christian; Verde, Licia] Univ Barcelona, ICCUB IEEC, E-08028 Barcelona, Spain, Email: cwagner@icc.ub.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000283577600013 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ elepoucu @ Serial 339
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Miralda-Escude, J.; Pena-Garay, C.; Quilis, V.
Title Neutrino halos in clusters of galaxies and their weak lensing signature Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 027 - 14pp
Keywords cosmological neutrinos; gravitational lensing; galaxy clusters
Abstract We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak lensing power spectrum or its cross-spectrum with galaxies. However, correctly modeling the distribution of mass in baryons and cold dark matter and suppressing any systematic errors to the accuracy required for detecting this neutrino perturbation is severely challenging.
Address [Villaescusa-Navarro, Francisco] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: villa@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000292332400027 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ elepoucu @ Serial 677
Permanent link to this record
 

 
Author de Putter, R.; Verde, L.; Jimenez, R.
Title Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 047 - 22pp
Keywords dark energy experiments; dark energy theory; galaxy evolution
Abstract We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.
Address [de Putter, Roland; Verde, Licia; Jimenez, Raul] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@icc.ub.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000315576400047 Approved no
Is ISI yes International Collaboration (up) no
Call Number IFIC @ pastor @ Serial 1362
Permanent link to this record
 

 
Author Carbone, C.; Mena, O.; Verde, L.
Title Cosmological parameters degeneracies and non-Gaussian halo bias Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 020 - 17pp
Keywords power spectrum; redshift surveys; galaxy clusters; cosmological parameters from LSS
Abstract We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard Lambda CDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model, parametrized by the f(NL) non-Gaussianity parameter which is zero for a Gaussian case, and make forecasts on f(NL) from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among f(NL) and the running of the spectral index alpha(s), the dark energy equation of state w, the effective sound speed of dark energy perturbations c(s)(2), the total mass of massive neutrinos M-nu = Sigma m(nu), and the number of extra relativistic degrees of freedom N-nu(rel). Neglecting CMB information on f(NL) and scales k > 0.03h/Mpc, we find that, if N-nu(rel) is assumed to be known, the uncertainty on cosmological parameters increases the error on f(NL) by 10 to 30% depending on the survey. Thus the f(NL) constraint is remarkable robust to cosmological model uncertainties. On the other hand, if N-nu(rel) is simultaneously constrained from the data, the f(NL) error increases by similar to 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1-sigma error of the order Delta f(NL) similar to 2 – 5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.
Address [Carbone, Carmelita] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy, Email: carmelita.carbone@unibo.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000283573200010 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ elepoucu @ Serial 347
Permanent link to this record
 

 
Author Trotta, R.; Johannesson, G.; Moskalenko, I.V.; Porter, T.A.; Ruiz de Austri, R.; Strong, A.W.
Title Constraints on Cosmic-Ray Propagation Models from a Global Bayesian Analysis Type Journal Article
Year 2011 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 729 Issue 2 Pages 106 - 16pp
Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical
Abstract Research in many areas of modern physics such as, e. g., indirect searches for dark matter and particle acceleration in supernova remnant shocks rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma-rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions. The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, which uses astrophysical information, and nuclear and particle data as inputs to self-consistently predict CRs, gamma-rays, synchrotron, and other observables. We demonstrate that a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.
Address [Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes ISI:000288608700029 Approved no
Is ISI yes International Collaboration (up) yes
Call Number IFIC @ pastor @ Serial 541
Permanent link to this record